scholarly journals Epitope mapping by cDNA expression of a monoclonal antibody which inhibits the binding of von Willebrand factor to platelet glycoprotein IIb/IIIa

1992 ◽  
Vol 284 (3) ◽  
pp. 711-715 ◽  
Author(s):  
G Piétu ◽  
A S Ribba ◽  
G Chérel ◽  
D Meyer

In order to study the structure-function relationship of von Willebrand Factor (vWF), we have located the epitope of a well-characterized monoclonal antibody (MAb) to vWF (MAb 9). This MAb reacts with the C-terminal portion of the vWF subunit, SPII fragment [amino acids (aa) 1366-2050], which includes an Arg-Gly-Asp (RGD) sequence at positions 1744-1746, and totally inhibits vWF and SPII binding to platelet membrane glycoprotein IIb/IIIa (GPIIb/IIIa). A recombinant DNA library was constructed by cloning small (250-500 nucleotides) vWF cDNA fragments into the lambda gt11 vector and these inserts were expressed as fusion proteins with beta-galactosidase. Immunological screening of the library with 125I-MAb 9 identified three immunoreactive clones. vWF inserts were amplified by the PCR and their sequences demonstrated overlapping nucleotides from positions 7630 to 7855 of vWF cDNA, coding for aa residues 1698-1773 of the mature subunit, indicating that this is the epitope of MAb 9. vWF-beta-galactosidase fusion protein reacted with 125I-MAb 9 by Western blotting. In a solid-phase radioimmunoassay, the purified fusion proteins decreased the binding of vWF to 125I-MAb 9 by 50%, and this inhibition was dose-dependent between 3.5 and 120 nM. Therefore the epitope of MAb 9 is located within aa 1698-1773 of the vWF subunit, which includes the RGD sequence implicated in the binding of adhesive proteins of GPIIb/IIIa.

Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3622-3630 ◽  
Author(s):  
C Denis ◽  
JA Williams ◽  
X Lu ◽  
D Meyer ◽  
D Baruch

Abstract The interaction of von Willebrand factor (vWF) with the alpha v beta 3 integrin of human umbilical vein endothelial cells is dependent on the RGD sequence present at residues 1744–1746 of the mature vWF subunit. We compared vWF and its two dimeric fragments, SpIII (residues 1–1365) and SpII (residues 1366–2050), as adhesion substrates. Solid-phase vWF and SpII supported endothelial cell adhesion, whereas SpIII, which contains the glycoprotein (GP) Ib binding domain, did not. Soluble SpII inhibited adhesion to immobilized ligands, whereas soluble vWF did not, suggesting that exposure of the cell attachment domain involves a conformational modification of vWF. Dendroaspin and albolabrin, two RGD- containing peptides of the disintegrin family, were potent inhibitors of cell adhesion to vWF (IC50 approximately 15 nmol/L). Complete inhibition of endothelial cell adhesion to vWF was obtained in the presence of F(ab')2 of monoclonal antibody 9 to vWF, which blocks vWF binding to platelet GPIIb/IIIa. In contrast, monoclonal antibody 713 to vWF, which blocks its binding to platelet GPIb, did not inhibit cell adhesion to vWF. These results indicate that endothelial cell adhesion to vWF is mediated by an RGD-dependent interaction with alpha v beta 3, but does not seem to involve a GPIb-like receptor, and show the importance of the conformation of the RGD sequence.


1987 ◽  
Author(s):  
L De Marco ◽  
M Mazzucato ◽  
M G Del Ben ◽  
U Budde ◽  
A B Federici ◽  
...  

Three preparations of purified von Willebrand factor (vWF), obtained from unrelated patients affected by type IIB von Willebrand disease, were found to have normal sialic acid content (between 129-190 nmoles/mg of vWF, as compared to 158 ± 17 nmoles/mg in four normal preparations) and to induce platelet aggregation in the presence of physiologic levels of divalent cations and without addition of ristocetin. A monoclonal antibody that blocks the vWF binding domain of the platelet glycoprotein (GP) Ib caused complete inhibition of IIB vWF-induced aggregation. On the contrary, a monoclonal antibody that blocks the receptor for adhesive proteins on the platelet GPIIb/IIIa complex failed to inhibit the initial response of platelets to high concentration of IIB vWF Moreover, IIB vWF caused agglutination of formalin-fixed platelets that was blocked only by the anti-GPIb antibody, suggesting that the binding of vWF to GPIb, even in the absence of ristocetin, results in platelet-platelet interaction that is followed by exposure of the GPIIb/IIIa receptors for adhesive proteins. Endogenous ADP, normally active platelet metabolism and fibrinogen binding to GPIIb/IIIa were necessary for maximal and irreversible platelet aggregation. In the absence of fibrinogen, however, aggregation was mediated by vWF binding to GPIIb/IIIa. A 52/48 kDa tryptic fragment containing the GPIb binding domain of normal vWF completely blocked the aggregation induced by all three IIB vWF preparations. The present study defines in detail the mechanisms involved in IIB vWF-induced platelet aggregation. Moreover, it establishes that the GPIb binding domain of normal and IIB vWF are closely related and that desialylation is not required for the direct interaction of IIB vWF with GPIb.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3622-3630 ◽  
Author(s):  
C Denis ◽  
JA Williams ◽  
X Lu ◽  
D Meyer ◽  
D Baruch

The interaction of von Willebrand factor (vWF) with the alpha v beta 3 integrin of human umbilical vein endothelial cells is dependent on the RGD sequence present at residues 1744–1746 of the mature vWF subunit. We compared vWF and its two dimeric fragments, SpIII (residues 1–1365) and SpII (residues 1366–2050), as adhesion substrates. Solid-phase vWF and SpII supported endothelial cell adhesion, whereas SpIII, which contains the glycoprotein (GP) Ib binding domain, did not. Soluble SpII inhibited adhesion to immobilized ligands, whereas soluble vWF did not, suggesting that exposure of the cell attachment domain involves a conformational modification of vWF. Dendroaspin and albolabrin, two RGD- containing peptides of the disintegrin family, were potent inhibitors of cell adhesion to vWF (IC50 approximately 15 nmol/L). Complete inhibition of endothelial cell adhesion to vWF was obtained in the presence of F(ab')2 of monoclonal antibody 9 to vWF, which blocks vWF binding to platelet GPIIb/IIIa. In contrast, monoclonal antibody 713 to vWF, which blocks its binding to platelet GPIb, did not inhibit cell adhesion to vWF. These results indicate that endothelial cell adhesion to vWF is mediated by an RGD-dependent interaction with alpha v beta 3, but does not seem to involve a GPIb-like receptor, and show the importance of the conformation of the RGD sequence.


1996 ◽  
Vol 75 (04) ◽  
pp. 655-660 ◽  
Author(s):  
Mario Mazzucato ◽  
Luigi De Marco ◽  
Paola Pradella ◽  
Adriana Masotti ◽  
Francesco I Pareti

SummaryPorcine von Willebrand factor (P-vWF) binds to human platelet glycoprotein (GP) lb and, upon stirring (1500 rpm/min) at 37° C, induces, in a dose-dependent manner, a transmembrane flux of Ca2+ ions and platelet aggregation with an increase in their intracellular concentration. The inhibition of P-vWF binding to GP lb, obtained with anti GP lb monoclonal antibody (LJ-Ib1), inhibits the increase of intracellular Ca2+ concentration ([Ca2+]i) and platelet aggregation. This effect is not observed with LJ-Ib10, an anti GP lb monoclonal antibody which does not inhibit the vWF binding to GP lb. An anti GP Ilb-IIIa monoclonal antibody (LJ-CP8) shown to inhibit the binding of both vWF and fibrinogen to the GP IIb-IIIa complex, had only a slight effect on the [Ca2+]i rise elicited by the addition of P-vWF. No inhibition was also observed with a different anti GP IIb-IIIa monoclonal antibody (LJ-P5), shown to block the binding of vWF and not that of fibrinogen to the GP IIb-IIIa complex. PGE1, apyrase and indomethacin show a minimal effect on [Ca2+]i rise, while EGTA completely blocks it. The GP lb occupancy by recombinant vWF fragment rvWF445-733 completely inhibits the increase of [Ca2+]i and large aggregates formation. Our results suggest that, in analogy to what is seen with human vWF under high shear stress, the binding of P-vWF to platelet GP lb, at low shear stress and through the formation of aggregates of an appropriate size, induces a transmembrane flux of Ca2+, independently from platelet cyclooxy-genase metabolism, perhaps through a receptor dependent calcium channel. The increase in [Ca2+]i may act as an intracellular message and cause the activation of the GP IIb-IIIa complex.


1986 ◽  
Vol 55 (03) ◽  
pp. 318-324 ◽  
Author(s):  
S Chand ◽  
A McCraw ◽  
R Hutton ◽  
E G D Tuddenham ◽  
A H Goodall

SummaryTwo monoclonal antibodies (RFF-VIII: R/l and RFF-VIII:R/ 2) which recognise the same epitope on von Willebrand factor (vWF) have been used in a simple, two-site, solid-phase immunoradiometric (IRMA) or enzyme-linked assay (ELISA) to analyse vWF in plasma from normal individuals and from patients with von Willebrand’s disease (vWD). Results obtained confirm our previous findings (using RFF-VIII :R/2 in a one-site, fluid-phase IRMA) that the MAbs detect the presence of an epitope on the vWF molecule that reflects its function. This epitope is involved in vWF binding to the GPIb protein on platelets. It is reduced in all types of vWD, including type II (or variant) vWD. It is present in normal plasma, in vWF released from normal platelets and from cultured umbilical cord vein endothelial cells. The epitope is, however, found to be reduced in serum. Studies on SDS-treated vWF prove that this GPIb-binding site is dependent on the conformation of the vWF multimers.


Blood ◽  
1992 ◽  
Vol 80 (1) ◽  
pp. 113-120 ◽  
Author(s):  
TW Chow ◽  
JD Hellums ◽  
JL Moake ◽  
MH Kroll

Platelets subjected to elevated levels of fluid shear stress in the absence of exogenous agonists will aggregate. Shear stress-induced aggregation requires von Willebrand factor (vWF) multimers, extracellular calcium (Ca2+), adenosine diphosphate (ADP), and platelet membrane glycoprotein (GP)Ib and GPIIb-IIIa. The sequence of interaction of vWF multimers with platelet surface receptors and the effect of these interactions on platelet activation have not been determined. To elucidate the mechanism of shear stress-induced platelet aggregation, suspensions of washed platelets were subjected to different levels of uniform shear stress (15 to 120 dyne/cm2) in an optically modified cone and plate viscometer. Cytoplasmic ionized calcium ([Ca2+]i) and aggregation of platelets were monitored simultaneously during the application of shear stress; [Ca2+]i was measured using indo-1 loaded platelets and aggregation was measured as changes in light transmission. Basal [Ca2+]i was approximately 60 to 100 nmol/L. An increase of [Ca2+]i (up to greater than 1,000 nmol/L) was accompanied by synchronous aggregation, and both responses were dependent on the shear force and the presence of vWF multimers. EGTA chelation of extracellular Ca2+ completely inhibited vWF-mediated [Ca2+]i and aggregation responses to shear stress. Aurin tricarboxylic acid, which blocks the GPIb recognition site on the vWF monomer, and 6D1, a monoclonal antibody to GPIb, also completely inhibited platelet responses to shear stress. The tetrapeptide RGDS and the monoclonal antibody 10E5, which inhibit vWF binding to GPIIb-IIIa, partially inhibited shear stress-induced [Ca2+]i and aggregation responses. The combination of creatine phosphate/creatine phosphokinase, which converts ADP to adenosine triphosphate and blocks the effect of ADP released from stimulated platelets, inhibited shear stress-induced platelet aggregation without affecting the increase of [Ca2+]i. Neither the [Ca2+]i nor aggregation response to shear stress was inhibited by blocking platelet cyclooxygenase metabolism with acetylsalicylic acid. These results indicate that GPIb and extracellular Ca2+ are absolutely required for vWF-mediated [Ca2+]i and aggregation responses to imposed shear stress, and that the interaction of vWF multimers with GPIIb-IIIa potentiates these responses. Shear stress-induced elevation of platelet [Ca2+]i, but not aggregation, is independent of the effects of release ADP, and both responses occur independently of platelet cyclooxygenase metabolism. These results suggest that shear stress induces the binding of vWF multimers to platelet GPIb and this vWF-GPIb interaction causes an increase of [Ca2+]i and platelet aggregation, both of which are potentiated by vWF binding to the platelet GPIIb-IIIa complex.


1994 ◽  
Vol 71 (06) ◽  
pp. 788-792 ◽  
Author(s):  
Geneviéve Piétu ◽  
Anne-Sophie Ribba ◽  
Ghislaine Chérel ◽  
Virginie Siguret ◽  
Bernadette Obert ◽  
...  

SummaryTwo recombinant expression libraries containing small (300-600 base pairs) cDNA fragments of von Willebrand Factor (vWF) were screened in order to map the epitope of monoclonal antibodies (MAbs) to vWF. Among eleven MAbs tested, seven were effectively mapped. The epitopes of MAbs 418 and 522, which inhibit the binding of vWF to Factor VIII (FVIII), were localized between Leu 2 and Arg 53 and between Glu 35 and He 81 of the vWF subunit respectively, within the N-terminal trypsin fragment called SpIII-T4 [amino acids (aa) 1-272] which contains a binding domain for FVIII. The epitope of MAb 710, which inhibits the binding of vWF to glycoprotein lb (GPIb), was identified between Ser 593 and Ser 678 on the tryptic 52/48 kDa fragment (aa 449-728) which contains binding domains for GPIb, collagen, heparin, sulfatides and subendothclium extracellular matrices. The epitope of MAb 723, which does not interfere with any known function of vWF, was localized between Ser 523 and Gly 588. The epitopes of MAb 505 and MAb 400, which inhibit the binding of v WF to collagen, were identified between Leu 927 and Arg 1114 within the SPI fragment (aa 911-1365) corresponding to the central part of the vWF subunit. The epitope of MAb 9, which inhibits the binding of vWF to GPIIb/IIIa, was identified in the C-terminal part of the vWF subunit between Gin 1704 and Asp 1746, the latter being the third aa of the RGD sequence common to adhesive proteins and serving as a recognition site for integrin receptors.


1995 ◽  
Vol 73 (01) ◽  
pp. 144-150 ◽  
Author(s):  
George A Ricca ◽  
Victoria South ◽  
George H Searfoss ◽  
Stephen French ◽  
Christopher Cheadle ◽  
...  

SummaryWe have constructed a fusion phage epitope library in the filamentous bacteriophage fuse5. The library was made by inserting a degenerate oligonucleotide which encodes 15 variable amino acids into the NH2-terminal region of the phage gene III protein. This library, containing over 107different epitope bearing phage, has been used in an attempt to identify inhibitors of the von Willebrand factor (vWF)-platelet Glycoprotein lb interaction. The library was screened with a monoclonal antibody (RG46) that recognizes the GPIb binding domain of vWF (amino acids 445-733). A total of 30 clones falling into 8 classes have been identified that react with the RG46 antibody. Isolates from all 8 classes are positive by immunoblot analysis. The amino acid sequence of the gene III fusion protein from positive clones showed a strong homology to the known RG46 epitope. Peptides identified from the screen were synthesized and used to demonstrate that some of the synthetic peptides exhibited inhibitory activity towards ristocetin induced binding of vWF to the GPIb receptor. Thus, we have demonstrated that screening a fusion phage epitope library with a monoclonal antibody that inhibits vWF binding to the GPIb receptor can be a useful tool not only for mapping antibody recognizing determinants, but also can serve as a source for identifying novel peptides that are antagonists for vWF binding to the platelet GPIb receptor.


1997 ◽  
Vol 78 (04) ◽  
pp. 1272-1277 ◽  
Author(s):  
Paul J Murdock ◽  
Barry J Woodhams ◽  
Kathy B Matthews ◽  
K John Pasi ◽  
Alison H Goodall

SummaryThe monoclonal antibody RFF-VIII:R/1 recognises an epitope on von Willebrand factor involved in its interaction with GPIbα. A two-site, solid phase ELISA has been established using RFF-VIII:R/1 as the solid-phase, capture antibody and an enzyme-conjugated, polyclonal antibody to human VWF, which provides an assay for VWF functional activity with a detection limit of 0.5 U/dl VWF and an interassay %CV<10. Plasma from 192 VWD patients (48 studied retrospectively; 144 prospectively) showed VWF levels of <50 U/dl in type 1 patients (n = 156), <25 U/dl in type 2A (n = 26) and <35 U/dl in type 2B (n = 8) which, in type 1 and 2A patients, correlated with RiCoF activity (r >0.82). In plasma from patients with type 1 VWD values of VWF in the Mab-based ELISA were similar to levels of VWF:Ag measured in a polyclonal antibody-based ELISA (r >0.87) but were significantly lower than VWF:Ag in type 2A and 2B plasmas (p <0.0005), allowing discrimination of variant VWD. The Mab-based ELISA has advantages of sensitivity and reproducibility over the RiCoF assay to measure VWF activity and can be used to analyse stored samples. In conjunction with an ELISA for VWF:Ag and VWF multimer analysis, it provides a reliable method, for the laboratory diagnosis of VWD.


Blood ◽  
1999 ◽  
Vol 93 (6) ◽  
pp. 1959-1968 ◽  
Author(s):  
Bernadette Obert ◽  
Anne Houllier ◽  
Dominique Meyer ◽  
Jean-Pierre Girma

Bitiscetin has recently been shown to induce von Willebrand factor (vWF)-dependent aggregation of fixed platelets (Hamako J, et al,Biochem Biophys Res Commun 226:273, 1996). We have purified bitiscetin from Bitis arietans venom and investigated the mechanism whereby it promotes a form of vWF that is reactive with platelets. In the presence of bitiscetin, vWF binds to platelets in a dose-dependent and saturable manner. The binding of vWF to platelets involves glycoprotein (GP) Ib because it was totally blocked by monoclonal antibody (MoAb) 6D1 directed towards the vWF-binding site of GPIb. The binding also involves the GPIb-binding site of vWF located on the A1 domain because it was inhibited by MoAb to vWF whose epitopes are within this domain and that block binding of vWF to platelets induced by ristocetin or botrocetin. However, in contrast to ristocetin or botrocetin, the binding site of bitiscetin does not reside within the A1 domain but within the A3 domain of vWF. Thus, among a series of vWF fragments, 125I-bitiscetin only binds to those that overlap the A3 domain, ie, SpIII (amino acid [aa] 1-1365), SpI (aa 911-1365), and rvWF-A3 domain (aa 920-1111). It does not bind to SpII corresponding to the C-terminal part of vWF subunit (aa 1366-2050) nor to the 39/34/kD dispase species (aa 480-718) or T116 (aa 449-728) overlapping the A1 domain. In addition, bitiscetin that does not bind to DeltaA3-rvWF (deleted between aa 910-1113) has no binding site ouside the A3 domain. The localization of the binding site of bitiscetin within the A3 domain was further supported by showing that MoAb to vWF, which are specific for this domain and block the interaction between vWF and collagen, are potent inhibitors of the binding of bitiscetin to vWF and consequently of the bitiscetin-induced binding of vWF to platelets. Thus, our data support the hypothesis that an interaction between the A1 and A3 domains exists that may play a role in the function of vWF by regulating the ability of the A1 domain to bind to platelet GPIb.


Sign in / Sign up

Export Citation Format

Share Document