scholarly journals Capture by chemical crosslinkers provides evidence that integrin α IIb β 3 forms a complex with protein tyrosine kinases in intact platelets

1995 ◽  
Vol 309 (2) ◽  
pp. 481-490 ◽  
Author(s):  
D J Dorahy ◽  
M C Berndt ◽  
G F Burns

Platelet activation is accompanied by a cascade of kinase reactions in which numerous specific proteins are phosphorylated on tyrosine. These events are strictly dependent upon functional activation of an integrin receptor, generally alpha IIb beta 3 (also known as glycoprotein IIb-IIIa). It is not known how alpha IIb beta 3 regulates protein tyrosine kinase activation and, in particular, neither this nor any other integrin has been shown to associate with a protein tyrosine kinase. We employed chemical crosslinking of intact platelets with the bifunctional reagents dithiobis(succinimidyl propionate) (DSP) (lipid-soluble) and dithiobis(sulphosuccinimidyl propionate) (DTSSP) (lipid-insoluble) followed by in vitro kinase assays of immunoprecipitated proteins to identify kinase activity associated with alpha IIb beta 3 in intact platelets. It was found that DSP but not DTSSP crosslinked kinase activity to alpha IIb beta 3, suggesting an internal association. In these immunoprecipitates from DSP-crosslinked platelets, the in vitro kinase reaction revealed a complex of several phosphoproteins in association with alpha IIb beta 3. This association was not seen when the resting platelets were lysed before crosslinking, indicating the specificity of the reaction in crosslinking only molecules in preformed spatial association. The beta 3 subunit of alpha IIb beta 3 was identified as one of the phosphoproteins in the complex obtained after subjecting anti-beta 3 immunoprecipitates from lysates of DSP-treated platelets to an in vitro kinase reaction and SDS/PAGE analysis. Phosphorylation of this subunit is shown to be predominantly on tyrosine. Affinity purification of the crosslinked phosphoprotein complex with anti-beta 3 followed by elution and re-precipitation identified pp60c-src and pp54/58c-lyn as two protein tyrosine kinases associating with the integrin. These results suggest that, upon platelet activation, alpha IIb beta 3 may provide a transmembrane focus for proteins involved in signal transduction.

1990 ◽  
Vol 10 (12) ◽  
pp. 6244-6256 ◽  
Author(s):  
D Dailey ◽  
G L Schieven ◽  
M Y Lim ◽  
H Marquardt ◽  
T Gilmore ◽  
...  

Extracts of bakers' yeast (Saccharomyces cerevisiae) contain protein-tyrosine kinase activity that can be detected with a synthetic Glu-Tyr copolymer as substrate (G. Schieven, J. Thorner, and G.S. Martin, Science 231:390-393, 1986). By using this assay in conjunction with ion-exchange and affinity chromatography, a soluble tyrosine kinase activity was purified over 8,000-fold from yeast extracts. The purified activity did not utilize typical substrates for mammalian protein-tyrosine kinases (enolase, casein, and histones). The level of tyrosine kinase activity at all steps of each preparation correlated with the content of a 40-kDa protein (p40). Upon incubation of the most highly purified fractions with Mn-ATP or Mg-ATP, p40 was the only protein phosphorylated on tyrosine. Immunoblotting of purified p40 or total yeast extracts with antiphosphotyrosine antibodies and phosphoamino acid analysis of 32P-labeled yeast proteins fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the 40-kDa protein is normally phosphorylated at tyrosine in vivo. 32P-labeled p40 immunoprecipitated from extracts of metabolically labeled cells by affinity-purified anti-p40 antibodies contained both phosphoserine and phosphotyrosine. The gene encoding p40 (YPK1) was cloned from a yeast genomic library by using oligonucleotide probes designed on the basis of the sequence of purified peptides. As deduced from the nucleotide sequence of YPK1, p40 is homologous to known protein kinases, with features that resemble known protein-serine kinases more than known protein-tyrosine kinases. Thus, p40 is a protein kinase which is phosphorylated in vivo and in vitro at both tyrosine and serine residues; it may be a novel type of autophosphorylating tyrosine kinase, a bifunctional (serine/tyrosine-specific) protein kinase, or a serine kinase that is a substrate for an associated tyrosine kinase.


1990 ◽  
Vol 10 (12) ◽  
pp. 6244-6256
Author(s):  
D Dailey ◽  
G L Schieven ◽  
M Y Lim ◽  
H Marquardt ◽  
T Gilmore ◽  
...  

Extracts of bakers' yeast (Saccharomyces cerevisiae) contain protein-tyrosine kinase activity that can be detected with a synthetic Glu-Tyr copolymer as substrate (G. Schieven, J. Thorner, and G.S. Martin, Science 231:390-393, 1986). By using this assay in conjunction with ion-exchange and affinity chromatography, a soluble tyrosine kinase activity was purified over 8,000-fold from yeast extracts. The purified activity did not utilize typical substrates for mammalian protein-tyrosine kinases (enolase, casein, and histones). The level of tyrosine kinase activity at all steps of each preparation correlated with the content of a 40-kDa protein (p40). Upon incubation of the most highly purified fractions with Mn-ATP or Mg-ATP, p40 was the only protein phosphorylated on tyrosine. Immunoblotting of purified p40 or total yeast extracts with antiphosphotyrosine antibodies and phosphoamino acid analysis of 32P-labeled yeast proteins fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the 40-kDa protein is normally phosphorylated at tyrosine in vivo. 32P-labeled p40 immunoprecipitated from extracts of metabolically labeled cells by affinity-purified anti-p40 antibodies contained both phosphoserine and phosphotyrosine. The gene encoding p40 (YPK1) was cloned from a yeast genomic library by using oligonucleotide probes designed on the basis of the sequence of purified peptides. As deduced from the nucleotide sequence of YPK1, p40 is homologous to known protein kinases, with features that resemble known protein-serine kinases more than known protein-tyrosine kinases. Thus, p40 is a protein kinase which is phosphorylated in vivo and in vitro at both tyrosine and serine residues; it may be a novel type of autophosphorylating tyrosine kinase, a bifunctional (serine/tyrosine-specific) protein kinase, or a serine kinase that is a substrate for an associated tyrosine kinase.


1986 ◽  
Vol 6 (12) ◽  
pp. 4467-4477
Author(s):  
J A Cooper ◽  
C S King

Phosphorylation of pp60c-src at Tyr-527, six residues from the carboxy terminus, has been implicated in regulation of the protein-tyrosine kinase activity of pp60c-src. Here we show that dephosphorylation of pp60c-src by phosphatase treatment in vitro caused a 10- to 20-fold increase in pp60c-src protein-tyrosine kinase activity. Binding of specific antibody to the region of pp60c-src which contains phosphotyrosine-527 also increased kinase activity. Each treatment increased phosphorylation of added substrates and of Tyr-416 within pp60c-src by a similar mechanism that involved altered interactions with ATP and increased catalytic rate. We suggest that the phosphorylated carboxy terminus acts as an inhibitor of the protein kinase domain of pp60c-src, unless its conformation is altered by either dephosphorylation or antibody binding. The antibody additionally stimulated the phosphorylation of forms of pp60c-src that had reduced gel mobility, much like those phosphorylated in kinase reactions containing pp60c-src activated by polyomavirus medium tumor antigen. These in vitro experiments provide models for the activation of pp60c-src in cells transformed by polyomavirus. We also show that autophosphorylation of pp60c-src at Tyr-527 occurs only to a very limited extent in vitro, even when Tyr-527 is made available for phosphorylation by treatment with phosphatase. This suggests that other protein-tyrosine kinases may normally phosphorylate Tyr-527 and regulate pp60c-src in the cell.


Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 4947-4952 ◽  
Author(s):  
Martin Carroll ◽  
Sayuri Ohno-Jones ◽  
Shu Tamura ◽  
Elisabeth Buchdunger ◽  
Jürg Zimmermann ◽  
...  

Abstract CGP 57148 is a compound of the 2-phenylaminopyrimidine class that selectively inhibits the tyrosine kinase activity of the ABL and the platelet-derived growth factor receptor (PDGFR) protein tyrosine kinases. We previously showed that CGP 57148 selectively kills p210BCR-ABL–expressing cells. To extend these observations, we evaluated the ability of CGP 57148 to inhibit other activated ABL tyrosine kinases, including p185BCR-ABL and TEL-ABL. In cell-based assays of ABL tyrosine phosphorylation, inhibition of ABL kinase activity was observed at concentrations similar to that reported for p210BCR-ABL. Consistent with the in vitro profile of this compound, the growth of cells expressing activated ABL protein tyrosine kinases was inhibited in the absence of exogenous growth factor. Growth inhibition was also observed with a p185BCR-ABL–positive acute lymphocytic leukemia (ALL) cell line generated from a Philadelphia chromosome–positive ALL patient. As CGP 57148 inhibits the PDGFR kinase, we also showed that cells expressing an activated PDGFR tyrosine kinase, TEL-PDGFR, are sensitive to this compound. Thus, this compound may be useful for the treatment of a variety of BCR-ABL–positive leukemias and for treatment of the subset of chronic myelomonocytic leukemia patients with a TEL-PDGFR fusion protein.


Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 4947-4952 ◽  
Author(s):  
Martin Carroll ◽  
Sayuri Ohno-Jones ◽  
Shu Tamura ◽  
Elisabeth Buchdunger ◽  
Jürg Zimmermann ◽  
...  

CGP 57148 is a compound of the 2-phenylaminopyrimidine class that selectively inhibits the tyrosine kinase activity of the ABL and the platelet-derived growth factor receptor (PDGFR) protein tyrosine kinases. We previously showed that CGP 57148 selectively kills p210BCR-ABL–expressing cells. To extend these observations, we evaluated the ability of CGP 57148 to inhibit other activated ABL tyrosine kinases, including p185BCR-ABL and TEL-ABL. In cell-based assays of ABL tyrosine phosphorylation, inhibition of ABL kinase activity was observed at concentrations similar to that reported for p210BCR-ABL. Consistent with the in vitro profile of this compound, the growth of cells expressing activated ABL protein tyrosine kinases was inhibited in the absence of exogenous growth factor. Growth inhibition was also observed with a p185BCR-ABL–positive acute lymphocytic leukemia (ALL) cell line generated from a Philadelphia chromosome–positive ALL patient. As CGP 57148 inhibits the PDGFR kinase, we also showed that cells expressing an activated PDGFR tyrosine kinase, TEL-PDGFR, are sensitive to this compound. Thus, this compound may be useful for the treatment of a variety of BCR-ABL–positive leukemias and for treatment of the subset of chronic myelomonocytic leukemia patients with a TEL-PDGFR fusion protein.


1986 ◽  
Vol 6 (12) ◽  
pp. 4467-4477 ◽  
Author(s):  
J A Cooper ◽  
C S King

Phosphorylation of pp60c-src at Tyr-527, six residues from the carboxy terminus, has been implicated in regulation of the protein-tyrosine kinase activity of pp60c-src. Here we show that dephosphorylation of pp60c-src by phosphatase treatment in vitro caused a 10- to 20-fold increase in pp60c-src protein-tyrosine kinase activity. Binding of specific antibody to the region of pp60c-src which contains phosphotyrosine-527 also increased kinase activity. Each treatment increased phosphorylation of added substrates and of Tyr-416 within pp60c-src by a similar mechanism that involved altered interactions with ATP and increased catalytic rate. We suggest that the phosphorylated carboxy terminus acts as an inhibitor of the protein kinase domain of pp60c-src, unless its conformation is altered by either dephosphorylation or antibody binding. The antibody additionally stimulated the phosphorylation of forms of pp60c-src that had reduced gel mobility, much like those phosphorylated in kinase reactions containing pp60c-src activated by polyomavirus medium tumor antigen. These in vitro experiments provide models for the activation of pp60c-src in cells transformed by polyomavirus. We also show that autophosphorylation of pp60c-src at Tyr-527 occurs only to a very limited extent in vitro, even when Tyr-527 is made available for phosphorylation by treatment with phosphatase. This suggests that other protein-tyrosine kinases may normally phosphorylate Tyr-527 and regulate pp60c-src in the cell.


Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 240
Author(s):  
Lan-Yi Wei ◽  
Wei Lin ◽  
Bey-Fen Leo ◽  
Lik-Voon Kiew ◽  
Chia-Ching Chang ◽  
...  

A miniature tyrosinase-based electrochemical sensing platform for label-free detection of protein tyrosine kinase activity was developed in this study. The developed miniature sensing platform can detect the substrate peptides for tyrosine kinases, such as c-Src, Hck and Her2, in a low sample volume (1–2 μL). The developed sensing platform exhibited a high reproducibility for repetitive measurement with an RSD (relative standard deviation) of 6.6%. The developed sensing platform can detect the Hck and Her2 in a linear range of 1–200 U/mL with the detection limit of 1 U/mL. The sensing platform was also effective in assessing the specificity and efficacies of the inhibitors for protein tyrosine kinases. This is demonstrated by the detection of significant inhibition of Hck (~88.1%, but not Her2) by the Src inhibitor 1, an inhibitor for Src family kinases, as well as the significant inhibition of Her2 (~91%, but not Hck) by CP-724714 through the platform. These results suggest the potential of the developed miniature sensing platform as an effective tool for detecting different protein tyrosine kinase activity and for accessing the inhibitory effect of various inhibitors to these kinases.


1994 ◽  
Vol 14 (1) ◽  
pp. 147-155
Author(s):  
B S Cobb ◽  
M D Schaller ◽  
T H Leu ◽  
J T Parsons

Changes in cellular growth and dramatic alterations in cell morphology and adhesion are common features of cells transformed by oncogenic protein tyrosine kinases, such as pp60src and other members of the Src family. In this report, we present evidence for the stable association of two Src family kinases (pp60src and pp59fyn) with tyrosine-phosphorylated forms of a focal adhesion-associated protein tyrosine kinase, pp125FAK. In Src-transformed chicken embryo cells, most of the pp125FAK was stably complexed with activated pp60src (e.g., pp60(527F). The stable association of pp125FAK with pp60(527F) in vivo required the structural integrity of the Src SH2 domain. The association of pp60(527F) and pp125FAK could be reconstituted in vitro by incubation of normal cell extracts with glutathione S-transferase fusion proteins containing SH2 or SH3/SH2 domains of pp60src. Furthermore, the association of isolated SH2 or SH3/SH2 domains with in vitro 32P-labeled pp125FAK protected the major site of pp125FAK autophosphorylation from digestion with a tyrosine phosphatase, indicating that the autophosphorylation site of pp125FAK participates in binding with Src. Immunoprecipitation of Src family kinases from extracts of normal chicken embryo cells revealed stable complexes of pp59fyn and tyrosine-phosphorylated pp125FAK. These data provide evidence for a direct interaction between two cytoplasmic nonreceptor protein tyrosine kinases and suggest that Src may contribute to changes in pp125FAK regulation in transformed cells. Furthermore, pp125FAK may directly participate in the targeting of pp59fyn or possibly other Src family kinases to focal adhesions in normal cells.


1991 ◽  
Vol 11 (5) ◽  
pp. 2496-2502
Author(s):  
V Lhoták ◽  
P Greer ◽  
K Letwin ◽  
T Pawson

The elk gene encodes a novel receptorlike protein-tyrosine kinase, which belongs to the eph subfamily. We have previously identified a partial cDNA encompassing the elk catalytic domain (K. Letwin, S.-P. Yee, and T. Pawson, Oncogene 3:621-678, 1988). Using this cDNA as a probe, we have isolated cDNAs spanning the entire rat elk coding sequence. The predicted Elk protein contains all the hallmarks of a receptor tyrosine kinase, including an N-terminal signal sequence, a cysteine-rich extracellular domain, a membrane-spanning segment, a cytoplasmic tyrosine kinase domain, and a C-terminal tail. In both amino acid sequence and overall structure, Elk is most similar to the Eph and Eck protein-tyrosine kinases, suggesting that the eph, elk, and eck genes encode members of a new subfamily of receptorlike tyrosine kinases. Among rat tissues, elk expression appears restricted to brain and testes, with the brain having higher levels of both elk RNA and protein. Elk protein immunoprecipitated from a rat brain lysate becomes phosphorylated on tyrosine in an in vitro kinase reaction, consistent with the prediction that the mammalian elk gene encodes a tyrosine kinase capable of autophosphorylation. The characteristics of the Elk tyrosine kinase suggest that it may be involved in cell-cell interactions in the nervous system.


1992 ◽  
Vol 288 (2) ◽  
pp. 395-405 ◽  
Author(s):  
I Gout ◽  
R Dhand ◽  
G Panayotou ◽  
M J Fry ◽  
I Hiles ◽  
...  

PtdIns 3-kinase associates with certain activated protein-tyrosine kinase receptors and with the pp60c-src/polyoma middle-T complex, suggesting that the enzyme is involved in growth regulation. The purified PtdIns 3-kinase appears to have two subunits, of 85 kDa and 110 kDa. Structural analysis at protein and cDNA levels revealed two forms of the 85 kDa subunit, one which associates with PtdIns 3-kinase activity termed p85 alpha, and a protein of unknown function, p85 beta. Both 85 kDa proteins contain src-homology regions 2 and 3 (SH2 and SH3), but lack enzymic activity, suggesting that they may be regulatory subunits of PtdIns 3-kinase. To probe their structure and function further, p85 alpha and p85 beta have been expressed and purified in large amounts from insect cells by using baculovirus vectors. Specific antisera detect p85 alpha, but not p85 beta, associated with PtdIns 3-kinase activity in various cell types. Co-expression studies in insect cells have shown that p85 alpha and p85 beta are substrates for the protein-tyrosine kinases of epidermal growth factor, colony-stimulating factor 1 and c-erbB2 receptors and the src family kinase p59c-fyn. Both p85 alpha and p85 beta form tight complexes with these protein-tyrosine kinases as measured by immunoprecipitation and kinase assays in vitro. The specificity of binding of free p85 is less restricted than that of p85 in the active PtdIns 3-kinase complex with the 110 kDa protein. The relevance of these results to growth-factor-induced PtdIns 3-kinase activation is discussed.


Sign in / Sign up

Export Citation Format

Share Document