scholarly journals Immunocytochemical localization and biochemical characterization of a novel plasma membrane-associated, neutral pH optimum α-l-fucosidase from rat testis and epididymal spermatozoa

1996 ◽  
Vol 318 (3) ◽  
pp. 821-831 ◽  
Author(s):  
Manuel AVILÉS ◽  
Irene ABASCAL ◽  
José Angel MARTÍNEZ-MENÁRGUEZ ◽  
María Teresa CASTELLS ◽  
Sheri R. SKALABAN ◽  
...  

1. Immunocytochemical and biochemical techniques have been used to localize and characterize a novel plasma membrane-associated, neutral-pH-optimum α-l-fucosidase from rat spermatozoa. Light and electron microscopy specifically localized the fucosidase on the plasma membrane of the convex region of the principal segment of testicular and cauda epididymal sperm heads. Immunoreactivity for α-l-fucosidase was also detected in the Golgi apparatus of spermatocytes and spermatids but no immunoreactivity was observed in the acrosome. 2. Fractionation of epididymal sperm homogenates indicated that over 90% of the α-l-fucosidase activity was associated with the 48000 g pellet. This pellet-associated activity could be solubilized with 0.5 M NaCl but not with 0.5% Triton X-100, suggesting that fucosidase is peripherally associated with membranes. Sucrose-density-gradient centrifugation of sperm homogenates indicated that fucosidase was enriched in the plasma membrane-enriched fraction. Analysis of α-l-fucosidase on intact epididymal sperm indicated that the enzyme was active, displayed linear kinetics and had a pH–activity curve (with an optimum near 7) which was comparable to that of fucosidase from epididymal sperm extracts. These results further suggest that fucosidase is associated with plasma membranes, and that its active site is accessible to fucoconjugates. Evidence that most of the fucosidase is associated with the exterior of the plasma membrane came from studies in which intact sperm had fucosidase activity comparable to that of sperm sonicates, and from studies in which approx. 90% of the fucosidase activity on intact sperm could be released from the sperm by gentle shaking with 0.5 M NaCl. Isoelectric focusing indicated that the NaCl-solubilized epididymal sperm fucosidase appears to have one major and one minor isoform with pIs near 7.2 and 5.2, respectively. SDS/PAGE and Western blotting indicated that the NaCl-solubilized extract of epididymal sperm contains two protein bands of 54 and 50 kDa which were highly immunoreactive with the IgG fraction of anti-fucosidase antibodies. Although the function of the novel sperm fucosidase is not known, its specific localization to the plasma membrane of the region of the rat sperm head involved in sperm–egg binding and its high enzymic activity at neutral pH on intact sperm suggest that this enzyme may have a role in sperm–egg interactions.

2006 ◽  
Vol 52 (7) ◽  
pp. 664-672 ◽  
Author(s):  
Duane T Mooney ◽  
Monica Jann ◽  
Bruce L Geller

The amino acid sequence of the phage infection protein (Pip) of Lactococcus lactis predicts a multiple-membrane-spanning region, suggesting that Pip may be anchored to the plasma membrane. However, a near-consensus sortase recognition site and a cell wall anchoring motif may also be present near the carboxy terminus. If functional, this recognition site could lead to covalent linkage of Pip to the cell wall. Pip was detected in both plasma membranes and envelopes (plasma membrane plus peptidoglycan) isolated from the wild-type Pip strain LM2301. Pip was firmly attached to membrane and envelope preparations and was solubilized only by treatment with detergent. Three mutant Pip proteins were separately made in which the multiple-membrane-spanning region was deleted (Pip-Δmmsr), the sortase recognition site was converted to the consensus (Pip-H841G), or the sortase recognition site was deleted (Pip-Δ6). All three mutant Pip proteins co-purified with membranes and could not be solubilized except with detergent. When membranes containing Pip-Δmmsr were sonicated and re-isolated by sucrose density gradient centrifugation, Pip-Δmmsr remained associated with the membranes. Strains that expressed Pip-H841G or Pip-Δ6 formed plaques with near unit efficiency, whereas the strain that expressed Pip-Δmmsr did not form plaques of phage c2. Both membranes and cell-free culture supernatant from the strain expressing Pip-Δmmsr inactivated phage c2. These results suggest that Pip is an integral membrane protein that is not anchored to the cell wall and that the multiple-membrane-spanning region is required for productive phage infection but not phage inactivation.Key words: phage infection protein, Pip, Lactococcus lactis, subcellular location.


1973 ◽  
Vol 132 (3) ◽  
pp. 449-458 ◽  
Author(s):  
Terence D. Prospero ◽  
Malcolm L. E. Burge ◽  
Kenneth A. Norris ◽  
Richard H. Hinton ◽  
Eric Reid

The ribonuclease and phosphodiesterase activities of rat liver plasma membranes, purified from the crude nuclear fraction by centrifugation in an A-XII zonal rotor and flotation, were examined and compared. The plasma membrane is responsible for between 65 and 90% of the phosphodiesterase activity of the cell and between 25 and 30% of the particulate ribonuclease activity measured at pH8.7 in the presence of 7.5mm-MgCl2. Both enzymes were most active between pH8.5 and 8.9. Close to the pH optimum, both enzymes were more active in Tris buffer than in Bicine or glycine buffer. Both plasma-membrane phosphodiesterase and ribonuclease were strongly activated by Mg2+, there being at least a 12-fold difference between the activity in the presence of Mg2+ and of EDTA. There is, however, a difference in the response of the enzymes to Mg2+ and EDTA in that the phosphodiesterase is fully activated by 1.0mm-MgCl2 and fully inhibited by 1.0mm-EDTA, whereas the ribonuclease requires 7.5mm-MgCl2 for full activation and 5mm-EDTA for full inhibition. Density-gradient centrifugation has indicated that on solubilization in Triton X-100 most of the ribonuclease activity is released into a small fragment of the same size as that containing the phosphodiesterase activity. The relationship between the two activities is discussed in view of these results.


1984 ◽  
Vol 39 (9-10) ◽  
pp. 927-937 ◽  
Author(s):  
A. Hager ◽  
W. Biber

Abstract A microsomal membrane fraction (6000 x g supernatant of a cell homogenate), isolated from coleoptiles of Zea mays, was separated by isopycnic sucrose density gradient centrifugation in the presence of EDTA and without a prior pelleting step to avoid irreversible sticking of different membrane species. The membrane fractions were characterized by assaying commonly used marker enzymes, and the levels of activity investigated of ATP hydrolysis, ATP-dependent H+ transport, and co- and countertransport of ions, such as Cl- , fumarate2-, K+ and Li+. The following results were obtained: (1) ATP hydrolysis is performed by different enzymes associated with different membranes: - vacuolar acid phosphatase (AP; inhibited by molybdate); - Golgi phosphatase, revealing IDPase, pNPase and ATPase activity (not inhibited by molybdate); - ATPase activity of residual submitochondrial particles (sensitive to azide); - a H+-translocating ATPase at tonoplast membranes (Km(ATP) = 0.29 mᴍ; pH 7.5; stimulated by uncouplers and completely inhibited by NO-3); - the H+-translocating ATPase of the plasmalemma (Km(ATP) = 0.39 mᴍ at pH 6.5, inhibited by vanadate, but not by NO-3). The latter activity is evident only after an osmotic shock, indicating that PL vesicles primarily exist as inside-in-vesicles. (2) ATP-fueled H+ pumps are localized at tonoplast (TO) and plasmalemma (PL) vesicles, they differ to some extent in their properties: (a) The PLH+ pump has a very narrow pH optimum and exhibits highest levels of activity at pH 6.5 with a pronounced increase of activity between pH 7.5 and 6.5 (properties, obviously important in vivo for the regulation of active H+-extrusion by certain growth substances, which affect the cytoplasmic pH (Hager and Moser, Planta 1984, in press); in contrast, TO H+ pumps show a considerably wider pH optimum with highest levels of activity around pH 7.5. (b) In variance to the PL H+ pump the activity of TO pumps (Km(ATP) = 0.24 mᴍ) is regulated via the oxidation state of essential thiol groups. Their oxidation to the S -S - form (e.g. by blue light in the presence of a flavin) causes an inactivation, whereas a re-reduction by GSH or cystein restores the activity [51]. (c) The ATP-fueled H+ transport into TO vesicles depends on an anion co-transport; most effective is Cl- , but there is also a stimulation by organic ions, C4 and C5 dicarboxylates, such as malate, succinate, fumarate, 2-oxoglutarate and aspartate; NO-3 is inhibitory. (d) H+-transport into sealed PL vesicles is also anion dependent. In this case, however, NO-3 is as effective as Cl-. (3) The TO membranes contain a H+/K+ exchange mechanism responsible for a secondary active K+ uptake into the vacuole. This mechanism could be the reason for a lower (ATP dependent) acidification of TO vesicles in the presence of K+ compared with Li+. - Similar effects are observed with plasmamembrane vesicles, but in this case there is still the question whether a H+/K+-exchange, a K+ channel, or both are acting.


1973 ◽  
Vol 57 (2) ◽  
pp. 199-NP ◽  
Author(s):  
HANNU RAJANIEMI ◽  
TAPANI VANHA-PERTTULA

SUMMARY The distribution of 125I-labelled luteinizing hormone (LH) was studied by autoradiography of the murine pregnant ovary 10 min after intravenous administration. The grains in autoradiograms were localized around the luteal cells. The pregnant ovary showed the highest uptake of 125I-labelled LH 30 min after the injection. No similar accumulation of 125I-labelled follicle-stimulating hormone, 125I-labelled albumin or free 125I was obtained. The ribosomal fraction of the corpus luteum contained a slightly higher level of radioactivity than the other subcellular fractions after injection of 125I-labelled LH. Sucrose density gradient centrifugation of the luteal particle preparation resulted in an enrichment of radioactivity in particles containing Na+,K+-activated ATPase, a marker enzyme of the plasma membrane. These findings support the concept of plasma membrane binding as the initial event in LH action on the target tissue.


1990 ◽  
Vol 45 (9-10) ◽  
pp. 963-972 ◽  
Author(s):  
Hildegard Maria Warneck ◽  
Hanns Ulrich Seitz

Abstract A 3 β-hydroxysteroid oxidoreductase was isolated and characterized in the microsomes of Digitalis lanata cell cultures. The enzyme catalyzes the conversion of 5α-pregnane-3,20-dione to 5a-pregnan-3 β-ol-20-one and requires NAD(P)H2. The enzyme was found to have a pH optimum of 80. The reaction had an optimum incubation temperature of 25 °C with linear reduction for the first 4 h, reaching maximum enzyme activity after 7 h. Substrate kinetics for 5a-pregnane-3,20-dione and NADPH2 resulted in apparent Km-values of 18.5-20 (µM for 5a-pregnane-3,20-dione and 50-120 µM for the co-substrate NADPH2. In order to localize 3β-hydroxysteroid oxidoreductase differential centrifugation as well as linear sucrose density gradient centrifugation were performed. The results obtained lead to the conclusion that 3β-hydroxysteroid oxidoreductase is not associated with a single cell compartment, but consists of a major soluble part and a markedly smaller part of endoplasmic reticulum-associated activity


1979 ◽  
Vol 83 (2) ◽  
pp. 338-347 ◽  
Author(s):  
M Büechi ◽  
T Bächi

A method was developed for directly observing the inner surfaces of plasma membranes by light and electron microscopy. Human erythrocytes were attached to cover slips (glass or mica) treated with aminopropylsilane and glutaraldehyde, and then disrupted by direct application of a jet of buffer, which removed the distal portion of the cells, thus exposing the cytoplasmic surface (PS) of the flattened membranes. Antispectrin antibodies and Sendai virus particles were employed as sensitive markers for, respectively, the PS and the external surface (ES) of the membrane; their localization by immunofluorescence or electron microscopy demonstrated that the major asymmetrical features of the plasma membrane were preserved. The fusion of Sendai virus particles with cells was investigated using double-labeling immunofluorescence techniques. Virus adsorbed to the ES of cells at 4 degrees C was not accessible to fluorescein-labeled antibodies applied from the PS side. After incubation at 37 degrees C, viral antigens could be detected at the PS. These antigens, however, remained localized and did not diffuse from the site of attachment, as is usually seen in viral antigens accessible on the ES. They may therefore represent internal viral antigens not incorporated into the plasma membrane as a result of virus-cell fusion.


1977 ◽  
Vol 24 (1) ◽  
pp. 295-310
Author(s):  
D.W. Galbraith ◽  
D.H. Northcote

A procedure for the isolation of plasma membranes from protoplasts of suspension-cultured soybean is described. Protoplasts were prepared by enzymic digestion of the cell wall and the plasma membrane was labelled with radioactive diazotized sulphanilic acid. The membrane systems from broken protoplasts were separated by continuous isopycnic sucrose gradient centrifugation. Radioactivity was localized in a band possessing a buoyant density of 1–14 g ml-1. The activities of NADPH- and NADH-cytochrome c reductase, fumarase, Mg2+-ATPase, IDPase and acid phosphodiesterase in the various regions of the density gradient were determined. A plasma membrane fraction was selected which was relatively uncontaminated with membranes derived from endoplasmic reticulum, tonoplasts and mitochondria. The results indicated that Mg2+-ATPase and possibly acid phosphodiesterase were associated with the plasma membrane.


1968 ◽  
Vol 3 (1) ◽  
pp. 17-32
Author(s):  
M. J. BERRIDGE ◽  
B. L. GUPTA

Adenosine triphosphatase (ATPase) activity in the rectal papillae of Calliphora has been studied by biochemical and histochemical techniques. The microsomal fraction contained a Mg2+-activated ATPase with a pH optimum of 8.0. The enzyme was not stimulated by the addition of Na+ plus K+ and was insensitive to ouabain. Histochemical studies using modifications of the Wachstein-Meisel method showed that at pH 7.2 this Mg2+-activated ATPase was specifically localized on the intracellular surface of the lateral plasma membranes. A similar though less intense reaction was obtained with adenosine diphosphate and inosine triphosphate, but not with guanosine triphosphate, uridine triphosphate or β-glycerophosphate as substrates. At an acid pH (6.6-6.8), very little reaction occurred on the lateral plasma membrane but some reaction product was present in mitochondria and nuclei. Very little enzyme activity was found in the flattened rectal epithelium. These results are discussed in relation to the available data on transport ATPases and on the structural basis of fluid transport by rectal papillae. It is proposed that the ATPase localized on the stacks of lateral plasma membrane may be involved with ion secretion into the intercellular spaces to create the osmotic gradient necessary to extract water from the lumen.


2004 ◽  
Vol 32 (5) ◽  
pp. 777-779
Author(s):  
P. Pompach ◽  
P. Man ◽  
P. Novák ◽  
V. Havlíček ◽  
A. Fišerová ◽  
...  

Many proteins involved in signal-transduction pathways are concentrated in membrane microdomains enriched in lipids with distinct physical properties. Since these microdomains are insoluble in non-ionic detergents in cold, proteins associated with them could be efficiently purified by techniques such as sucrose-density gradient centrifugation. The complexity of the resulting protein mixture requires powerful MS technique for its analysis. We have found that successful identification of biologically relevant proteins is critically dependent on the enrichment of the starting material (plasma membranes), and on the extraction procedure. Applying these conditions in combination with microHPLC-ESI (electrospray ionization)-MS/MS, we have identified proteins involved in signalling, cytoskeletal association and cellular adhesion in Jurkat cells that are not stimulated by any antibody incubation.


Sign in / Sign up

Export Citation Format

Share Document