scholarly journals Involvement of the core protein in the first β-N-acetylgalactosamine transfer to the glycosaminoglycan–protein linkage-region tetrasaccharide and in the subsequent polymerization: the critical determining step for chondroitin sulphate biosynthesis

1999 ◽  
Vol 340 (2) ◽  
pp. 353-357 ◽  
Author(s):  
Satomi NADANAKA ◽  
Hiroshi KITAGAWA ◽  
Fumitaka GOTO ◽  
Jun-ichi TAMURA ◽  
Klaus W. NEUMANN ◽  
...  

α-Thrombomodulin (α-TM) with a truncated glycosaminoglycan-protein linkage tetrasaccharide, GlcAβ1-3Galβ1-3Galβ1-4Xyl, was tested as an acceptor together with a sugar donor, UDP-N-[3H]acetylgalactosamine, using a cell-free enzyme system prepared from the serum-free culture medium of a human melanoma cell line. The truncated tetrasaccharide on α-TM served as an acceptor, whereas the linkage tetrasaccharide-serine did not. Our characterization of the radioactively labelled product by enzymic digestion revealed that the N-[3H]acetylgalactosamine residue was transferred to α-TM through a β1,4-linkage. The substrate competition experiments with the chondro-hexasaccharide and α-TM reinforced our speculation that a common N-acetylgalactosaminyltransferase catalysed the transfer of N-acetylgalactosamine to both the linkage tetrasaccharide and the longer chondroitin oligosaccharides. Moreover, chondroitin polymerization was demonstrated on the tetrasaccharide of α-TM using both UDP-glucuronic acid and UDP-N-acetylgalactosamine as sugar donors. Much longer chains were synthesized on α-TM than on the linkage penta- and hexa-saccharide-serines. Together, these results indicated that the core protein is required for the transfer of the first N-acetylgalactosamine residue through a β1,4-linkage and also for subsequent efficient chain polymerization reactions, and that the critical determining step for chondroitin sulphate biosynthesis is the transfer of the first N-acetylgalactosamine residue.

1986 ◽  
Vol 240 (2) ◽  
pp. 575-583 ◽  
Author(s):  
R Kapoor ◽  
C F Phelps ◽  
T N Wight

Bovine aortic chondroitin sulphate/dermatan sulphate proteoglycans (PG-25, PG-35 and PG-50) were differentially precipitated with ethanol and analysed by a variety of chemical and physical techniques. The glycosaminoglycan chains of PG-25 and PG-35 contained a mixture of glucuronic acid and iduronic acid, whereas the uronic acid component of PG-50 was primarily glucuronic acid. In addition, various amounts of oligosaccharides containing small amounts of mannose, a galactose/hexosamine ratio of 1:1 and an absence of uronic acid were covalently linked to the core protein of all proteoglycans. The weight-average Mr (Mw) values of the proteoglycans determined by light-scattering in 4 M-guanidinium chloride were 1.3 × 10(6) (PG-25), 0.30 × 10(6) (PG-35) and 0.88 × 10(6) (PG-50). The s0 values of the proteoglycans were distributed between 7 and 8 S, and the reduced viscosities, eta sp./c, of all proteoglycans were dependent on the shear rate and polymer concentration. Electron microscopy of spread molecules revealed that PG-25 contained small structural units that appeared to self-associate into large aggregates, whereas PG-35 and PG-50 appeared mainly as monomers consisting of a core with various numbers of side projections. Hyaluronic acid-proteoglycan complexes occurred only with a small proportion of the molecules present in PG-35, and their formation could be inhibited by oligosaccharides. These results suggest the presence in the aorta of subspecies of chondroitin sulphate and dermatan sulphate proteoglycans, which show large variations in their physicochemical and inter- and intra-molecular association properties.


1996 ◽  
Vol 318 (3) ◽  
pp. 1051-1056 ◽  
Author(s):  
Dagmar-Christiane FISCHER ◽  
Hans-Dieter HAUBECK ◽  
Kirsten EICH ◽  
Susanne KOLBE-BUSCH ◽  
Georg STÖCKER ◽  
...  

Monoclonal antibodies (mAbs) were prepared against aggrecan which has been isolated from human articular cartilage and purified by several chromatographic steps. One of these mAbs, the aggrecan-specific mAb 3D12/H7, was selected for further characterization. The data presented indicate that this mAb recognizes a novel domain of keratan sulphate chains from aggrecan: (1) immunochemical staining of aggrecan is abolished by treatment with keratanase/keratanase II, but not with keratanase or chondroitin sulphate lyase AC/ABC; (2) after chemical deglycosylation of aggrecan no staining of the core-protein was observed; (3) different immunochemical reactivity was observed against keratan sulphates from articular cartilage, intervertebral disc and cornea for the mAbs 3D12/H7 and 5D4. For further characterization of the epitope, reduced and 3H-labelled keratan sulphate chains were prepared. In an IEF–gel-shift assay it was shown that the 3H-labelled oligosaccharides obtained after keratanase digestion of reduced and 3H-labelled keratan sulphate chains were recognized by the mAb 3D12/H7. Thus it can be concluded that the mAb 3D12/H7 recognizes an epitope in the linkage region present in, at least some, keratan sulphate chains of the large aggregating proteoglycan from human articular cartilage. Moreover, this domain seems to be expressed preferentially on those keratan sulphate chains which occur in the chondroitin sulphate-rich region of aggrecan, since the antibody does not recognize the keratan sulphate-rich region obtained after combined chondroitinase AC/ABC and trypsin digestion of aggrecan.


2000 ◽  
Vol 350 (1) ◽  
pp. 181-188 ◽  
Author(s):  
Sarah G. REES ◽  
Carl R. FLANNERY ◽  
Chris B. LITTLE ◽  
Clare E. HUGHES ◽  
Bruce CATERSON ◽  
...  

We have examined the catabolism of the proteoglycans aggrecan, decorin and biglycan in fresh tendon samples and in explant cultures of tissue from the tensional and compressed regions of young and mature bovine tendons. A panel of well-characterized antibodies that recognize glycosaminoglycan or protein (linear or neoepitope) sequences was used to detect proteoglycans and proteoglycan degradation products that were both retained within the tissue and released into the culture medium. In addition, a reverse-transcriptase-mediated PCR analysis was used to examine the mRNA expression patterns of tendon proteoglycans and aggrecanases. The results of this study indicate a major role for aggrecanase(s) in the catabolism of aggrecan in bovine tendon. The study also provides a characterization of glycosaminoglycan epitopes associated with the proteoglycans of tendon, illustrating age-related changes in the isomers of chondroitin sulphate disaccharides that remain attached to the core protein glycosaminoglycan linkage region after digestion with chondroitinase ABC. Evidence for a rapid turnover of the small proteoglycans decorin and biglycan was also observed, indicating additional molecular pathways that might compromise the integrity of the collagen matrix and potentially contribute to tendon dysfunction after injury and during disease.


1984 ◽  
Vol 224 (3) ◽  
pp. 977-988 ◽  
Author(s):  
D J McQuillan ◽  
C J Handley ◽  
H C Robinson ◽  
K Ng ◽  
C Tzaicos ◽  
...  

The effect of cycloheximide on chondroitin sulphate biosynthesis was studied in bovine articular cartilage maintained in culture. Addition of 0.4 mM-cycloheximide to the culture medium was followed, over the next 4h, by a first-order decrease in the rate of incorporation of [35S]sulphate into glycosaminoglycan (half-life, t 1/2 = 32 min), which is consistent with the depletion of a pool of proteoglycan core protein. Addition of 1.0 mM-benzyl beta-D-xyloside increased the rate of incorporation of [35S]sulphate and [3H]acetate into glycosaminoglycan, but this elevated rate was also diminished by cycloheximide. It was concluded that cycloheximide exerted two effects on the tissue; not only did it inhibit the synthesis of the core protein, but it also lowered the tissue's capacity for chondroitin sulphate chain synthesis. Similar results were obtained with chick chondrocytes grown in high-density cultures. Although the exact mechanism of this secondary effect of cycloheximide is not known, it was shown that there was no detectable change in cellular ATP concentration or in the amount of three glycosyltransferases (galactosyltransferase-I, N-acetylgalactosaminyltransferase and glucuronosyltransferase-II) involved in chondroitin sulphate chain synthesis. The sizes of the glycosaminoglycan chains formed in the presence of cycloheximide were larger than those formed in control cultures, whereas those synthesized in the presence of benzyl beta-D-xyloside were consistently smaller, irrespective of the presence of cycloheximide. These results suggest that beta-D-xylosides must be used with caution to study chondroitin sulphate biosynthesis as an event entirely independent of proteoglycan core-protein synthesis, and they also indicate a possible involvement of the core protein in the activation of the enzymes of chondroitin sulphate synthesis.


1996 ◽  
Vol 316 (2) ◽  
pp. 427-437 ◽  
Author(s):  
A. J. JAQUES ◽  
G. OPDENAKKER ◽  
T. W. RADEMACHER ◽  
R. A. DWEK ◽  
S. E. ZAMZE

The glycosylation of tissue plasminogen activator (t-PA) obtained from the Bowes melanoma cell line was re-examined using methods of serial lectin affinity chromatography coupled with Bio-Gel P-4 gel filtration chromatography and exoglycosidase sequencing. This study clarified an earlier discrepancy in the literature and confirmed that the major complex N-linked glycans on Bowes t-PA that carry sialic acid as their sole charged group are bi-antennary, core fucosylated, with terminal N-acetylgalactosamine residues. We also report the characterization of a series of related and previously unidentified sialylated glycans. Further we show that Bowes t-PA expresses glucuronic acid/sulphate containing N-linked glycans and is recognized by anti-carbohydrate L2/HNK-1 monoclonal antibodies. The presence on Bowes t-PA of glycans associated primarily with the nervous system is consistent with its expression in a cell line of neuroectodermal origin.


1984 ◽  
Vol 223 (2) ◽  
pp. 401-412 ◽  
Author(s):  
R M Mason ◽  
J D Lineham ◽  
M A Phillipson ◽  
C M Black

Cyclofenil diphenol, a weak non-steroidal oestrogen, binds to albumin. In the presence of concentrations of albumin just sufficient to keep cyclofenil diphenol in solution, the compound inhibited the synthesis of [35S]proteoglycans, [3H]glycoproteins, [3H]hyaluronate and [3H]proteins in primary cultures of chondrocytes from the Swarm rat chondrosarcoma in a dose-dependent manner. When excess albumin was present, conditions were found (90 micrograms of cyclofenil diphenol and 4 mg of albumin per ml of culture medium) which completely inhibited [35S]proteoglycan and [3H]hyaluronate synthesis but had little effect on [3H]protein or [3H]glycoprotein synthesis. The time of onset of inhibition of [35S]proteoglycan synthesis by cyclofenil diphenol was very rapid (t1/2 less than 25 min) and incompatible with an action mediated through suppression of proteoglycan core protein synthesis. Cyclofenil diphenol inhibited the synthesis of [35S]chondroitin sulphate chains onto p-nitrophenyl beta-D-xyloside in the cultures. Cyclofenil diphenol had little effect on the secretion from chondrocytes of [35S]proteoglycans synthesized immediately prior to treatment. Chondrocyte cultures treated with cyclofenil diphenol recovered their biosynthetic activities almost completely within 3 h of removing the compound from the culture medium. Cyclofenil diphenol had a similar inhibitory action on the synthesis of [35S]proteoglycans in secondary cultures of human dermal fibroblasts from both normal subjects and patients with systemic sclerosis. It is proposed that cyclofenil diphenol inhibits the synthesis of [35S]proteoglycans by interfering with the formation of the glycosaminoglycan side chains of these molecules in the Golgi apparatus of cells. The action may be due to disturbance of Golgi membrane organization by the compound.


1984 ◽  
Vol 217 (1) ◽  
pp. 259-263 ◽  
Author(s):  
B M Vertel ◽  
W B Upholt ◽  
A Dorfman

Total RNA was extracted from the cartilage tissues rat Swarm chondrosarcoma, neonatal-rat breastplate and embryonic-chicken sterna and translated in wheat-germ cell-free reactions. The core protein of the chondroitin sulphate proteoglycan subunit was identified among translation products of rat mRNA by its apparent Mr of 330 000 and by its immunoprecipitation with specific antisera prepared against rat or chicken proteoglycan antigens. The apparent Mr of the rat proteoglycan core protein is 8000-10000 less than that of the equivalent chicken cartilage core-protein product.


1982 ◽  
Vol 202 (2) ◽  
pp. 387-395 ◽  
Author(s):  
D Mitchell ◽  
T Hardingham

Chondroitin sulphate synthesis on proteoglycans was decreased in rat chondrosarcoma cell cultures in the presence of cycloheximide (0.1-1.0 muM) or p-nitrophenyl beta-D-xyloside (50 microM). In the presence of cycloheximide the proteoglycan monomer was of larger size, the chondroitin sulphate chains were increased in length, but a similar number of chains was attached to each proteoglycan and the size of the core protein was unaltered. In the presence of p-nitrophenyl beta-D-xyloside (50 microM), chondroitin sulphate synthesis was increased (by 60-80%), but the incorporation into proteoglycans was decreased (by 70%). The chondroitin sulphate chains were of shorter length than in control cultured and the number of chains attached to each proteoglycan was decreased. In cultures with cycloheximide or actinomycin D the synthesis of chondroitin sulphate was less inhibited on beta-xyloside than on endogenous proteoglycan. When the rate of chondroitin sulphate synthesis was decreased by lowering the temperature of cultures, the chains synthesized at 22 and 4 degrees C were much longer than at 37 degrees C, but in the presence of p-nitrophenyl beta-D-xyloside the chains were of the same length at all three temperatures. A model of chain elongation is thus proposed in which the rate of chain synthesis is determined by the concentration of xylosyl acceptor and the length of the chains is determined by the ratio of elongation activity to xylosyl-acceptor concentration.


2004 ◽  
Vol 85 (11) ◽  
pp. 3353-3360 ◽  
Author(s):  
Feng Cao ◽  
John E. Tavis

It was recently found that the Duck hepatitis B virus (DHBV) reverse transcriptase is primarily a non-encapsidated cytoplasmic molecule that is rapidly translated and has a very short half-life. Here, a non-encapsidated reverse transcriptase from the human Hepatitis B virus (HBV) was characterized. HBV polymerase accumulated in the cytoplasm in a manner similar to non-encapsidated DHBV polymerase. However, the HBV polymerase accumulated at an apparently lower concentration and had a longer half-life than the DHBV enzyme, and it displayed no evidence of the post-translational modifications observed for DHBV. Unlike the DHBV polymerase, immunofluorescence detection of the HBV polymerase in cells was suppressed by the core protein, and this suppression occurred independently of encapsidation. This implies an interaction between the polymerase and core in addition to encapsidation, but the polymerase and core did not co-immunoprecipitate, so the interaction might not be direct. These data indicate that production of cytoplasmic, non-encapsidated polymerase is conserved among the hepadnaviral genera. Furthermore, conservation of the cytoplasmic form of the polymerase suggests that it might have function(s) in virus replication or pathology beyond copying the viral genome.


Sign in / Sign up

Export Citation Format

Share Document