scholarly journals Cleavage of arginyl-arginine and lysyl-arginine from the C-terminus ofpro-hormone peptides by human germinal angiotensin I-converting enzyme (ACE) and the C-domain of human somatic ACE

1997 ◽  
Vol 328 (2) ◽  
pp. 587-591 ◽  
Author(s):  
R. Elwyn ISAAC ◽  
A. Tracy WILLIAMS ◽  
Mohammed SAJID ◽  
Pierre CORVOL ◽  
David COATES

Mammalian germinal angiotensin I-converting enzyme (gACE) is a single-domain dipeptidyl carboxypeptidase found exclusively in male germ cells, which has almost identical sequence and enzymic properties with the C-domain of the two-domain somatic ACE. Mutant mice that do not express gACE are infertile, suggesting a role for the enzyme in the processing of undefined peptides involved in fertilization. A number of spermatid peptides [e.g. cholecystokinin (CCK) and gastrin] are processed from pro-hormones by endo- and exo-proteolytic cleavages which might generate substrates for gACE. We have shown that peptide hormone intermediates with Lys/Arg-Arg at the C-terminus are high-affinity substrates for human gACE. gACE from human sperm cleaved Arg-Arg from the C-terminus of the CCK5-GRR (GWMDFGRR), a peptide corresponding to the C-terminus of a CCK-gastrin prohormone intermediate. Hydrolysis of CCK5-GRR by recombinant human C-domain ACE was Cl- dependent, with maximal activity achieved in 5-10 mM NaCl at pH 6.4. C-Domain ACE cleaved Lys/Arg-Arg from the C-terminus of dynorphin-(1-7), a pro-TRH peptide KRQHPGKR, and two insect peptides FSPRLGKR and FSPRLGRR. C-Domain ACE displayed high affinity towards all these substrates with Vmax/Km values between 14 and 113 times greater than the Vmax/Km for the conversion of the best known ACE substrate, angiotensin I, into angiotensin II. In conclusion, we have identified a new class of substrates for human gACE, and we suggest that gACE might be an alternative to carboxypeptidase E for the trimming of basic dipeptides from the C-terminus of intermediates generated from pro-hormones by subtilisin-like convertases in human male germ cells.

1998 ◽  
Vol 330 (1) ◽  
pp. 61-65 ◽  
Author(s):  
R. Elwyn ISAAC ◽  
Liliane SCHOOFS ◽  
A. Tracy WILLIAMS ◽  
Dirk VEELAERT ◽  
Mohammed SAJID ◽  
...  

Insect peptidyl-dipeptidase A [angiotensin I-converting enzyme (ACE)] is a soluble single-domain peptidyl-dipeptidase that has many properties in common with the C-domain of mammalian somatic ACE and with the single-domain mammalian germinal ACE. Mammalian somatic ACE is important in blood homoeostasis, but the role of ACE in insects is not known. Immunocytochemistry has been used to localize ACE in the neuroendocrine system of the locust, Locusta migratoria. Staining was observed in five groups of neurosecretory cells in the brain and suboesophageal ganglion, in the nervi corpori cardiaci, the storage part of the corpora cardiaca and in the nervi corpori allati. In three groups of neurosecretory cells, ACE co-localized with locustamyotropins, suggesting a possible role for the enzyme in the metabolism of these neuropeptides. We demonstrate in vitro a novel activity of ACE that removes pairs of basic amino acid residues from a locustamyotropin peptide extended at the C-terminus with either Gly-Lys-Arg or Gly-Arg-Arg, corresponding to a consensus recognition sequence for endoproteolysis of prohormone proteins by prohormone convertases. The low Km and high kcat values (Km 7.3 and 5.0 μM, kcat 226 and 207 s-1 for the hydrolysis of Phe-Ser-Pro-Arg-Leu-Gly-Lys-Arg and Phe-Ser-Pro-Arg-Leu-Gly-Arg-Arg, respectively) obtained for the hydrolysis of these two peptides by insect ACE means that these peptides, along with mammalian bradykinin, are the most favoured in vitro ACE substrates so far identified. The discovery of this in vitro prohormone-processing activity of insect ACE provides a possible explanation for the intracellular co-localization of the enzyme with locustamyotropin peptides, and provides evidence for a new role for ACE in the biosynthesis of peptide hormones and transmitters.


Diabetes ◽  
1994 ◽  
Vol 43 (3) ◽  
pp. 384-388 ◽  
Author(s):  
M. Marre ◽  
P. Bernadet ◽  
Y. Gallois ◽  
F. Savagner ◽  
T. T. Guyene ◽  
...  

2005 ◽  
Vol 10 (3) ◽  
pp. 239-243 ◽  
Author(s):  
Rohan Karawita ◽  
Pyo-Jam park ◽  
Nalin Siriwardhana ◽  
Byong-Tae Jeon ◽  
Sang-Ho Moon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document