scholarly journals Binding of MARCKS (myristoylated alanine-rich C kinase substrate)-related protein (MRP) to vesicular phospholipid membranes

1998 ◽  
Vol 330 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Guy VERGÈRES ◽  
J. Jeremy RAMSDEN

The myristoylated alanine-rich C kinase substrate (MARCKS) protein family has two known members, MARCKS itself and MARCKS-related protein (MRP, also called MacMARCKS or F52). They are essential for brain development and are believed to regulate the structure of the actin cytoskeleton at the plasma membrane. Hence membrane binding is central to their function. MARCKS has been quite extensively characterized; MRP much less so. Despite the fact that MRP is only two thirds the size of MARCKS, it has hitherto been assumed that the two proteins have similar properties. Here we make a detailed study, including the effects of myristoylation, lipid composition, calmodulin and phosphorylation of the binding of MRP to phospholipid vesicles. We show that both the N-terminal myristoyl moiety and the central effector domain mediate binding. MRP behaves like MARCKS in the presence of neutral phospholipids. In contrast to MARCKS, however, the incorporation of 20% of negatively-charged phospholipids only marginally increases the affinity of myristoylated MRP. Co-operativity between the myristoyl moiety and the effector domain of MRP is weak and the protein has a significantly lower affinity for these vesicles compared with MARCKS. Furthermore, calmodulin or phosphorylation of the effector domain by the catalytic subunit of protein kinase C do not significantly decrease the binding of myristoylated MRP to negatively-charged phospholipid vesicles. Our results show that the mechanisms regulating the interactions of MARCKS and MRP with phospholipid vesicles are, at least quantitatively, different. In agreement with cellular studies, we therefore propose that MARCKS and MRP have different subcellular localization and, consequently, different functions.

2011 ◽  
Vol 22 (24) ◽  
pp. 4908-4917 ◽  
Author(s):  
Deepti Gadi ◽  
Alice Wagenknecht-Wiesner ◽  
David Holowka ◽  
Barbara Baird

Protein kinase C β (PKCβ) participates in antigen-stimulated mast cell degranulation mediated by the high-affinity receptor for immunoglobulin E, FcεRI, but the molecular basis is unclear. We investigated the hypothesis that the polybasic effector domain (ED) of the abundant intracellular substrate for protein kinase C known as myristoylated alanine-rich protein kinase C substrate (MARCKS) sequesters phosphoinositides at the inner leaflet of the plasma membrane until MARCKS dissociates after phosphorylation by activated PKC. Real-time fluorescence imaging confirms synchronization between stimulated oscillations of intracellular Ca2+concentrations and oscillatory association of PKCβ–enhanced green fluorescent protein with the plasma membrane. Similarly, MARCKS-ED tagged with monomeric red fluorescent protein undergoes antigen-stimulated oscillatory dissociation and rebinding to the plasma membrane with a time course that is synchronized with reversible plasma membrane association of PKCβ. We find that MARCKS-ED dissociation is prevented by mutation of four serine residues that are potential sites of phosphorylation by PKC. Cells expressing this mutated MARCKS-ED SA4 show delayed onset of antigen-stimulated Ca2+mobilization and substantial inhibition of granule exocytosis. Stimulation of degranulation by thapsigargin, which bypasses inositol 1,4,5-trisphosphate production, is also substantially reduced in the presence of MARCKS-ED SA4, but store-operated Ca2+entry is not inhibited. These results show the capacity of MARCKS-ED to regulate granule exocytosis in a PKC-dependent manner, consistent with regulated sequestration of phosphoinositides that mediate granule fusion at the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document