scholarly journals A 211-bp enhancer of the rat uncoupling protein-1 (UCP-1) gene controls specific and regulated expression in brown adipose tissue

1998 ◽  
Vol 333 (2) ◽  
pp. 243-246 ◽  
Author(s):  
Anne-Marie CASSARD-DOULCIER ◽  
Chantal GELLY ◽  
Frédéric BOUILLAUD ◽  
Daniel RICQUIER

The uncoupling protein-1 gene is uniquely expressed in brown adipose tissue (BAT) and is positively regulated by cold exposure of animals and the sympathetic nervous system. To analyse the importance of a previously identified 211-bp enhancer [Cassard-Doulcier, Gelly, Fox, Schrementi, Raimbault, Klaus, Forest, Bouillaud and Ricquier (1993) Mol. Endocrinol. 7, 497–506] in the tissue-specific expression of this gene, transgenic mice were generated using the chloramphenicol acetyltransferase (CAT) gene as a reporter gene. One out of fourteen lines of the control transgenic mice bearing the Herpes simplex thymidine kinase (TK) promoter expressed weakly the CAT reporter gene in several tissues, whereas the other lines did not express CAT. Eight founders bearing the 211-bp enhancer-TK transgene were obtained. In six lines, no expression of CAT was detected. In one line, the expression of CAT was restricted to BAT. In another line, the expression of CAT was found in BAT and, to a lesser extent, in testis. Moreover, in these lines a marked and specific increase in the expression of the reporter gene in BAT was observed either after exposure of mice to the cold or by treating them with a β-adrenoceptor agonist drug. These results demonstrate that the 211-bp enhancer alone is sufficient to both direct and restrict expression to BAT. This enhancer also mediates the transcriptional response of the gene to β-adrenergic stimulation, although it does not contain conserved cAMP response element.

2015 ◽  
Vol 112 (22) ◽  
pp. 6973-6978 ◽  
Author(s):  
Yang Lee ◽  
Chrissie Willers ◽  
Edmund R. S. Kunji ◽  
Paul G. Crichton

Uncoupling protein 1 (UCP1) catalyzes fatty acid-activated, purine nucleotide-sensitive proton leak across the mitochondrial inner membrane of brown adipose tissue to produce heat, and could help combat obesity and metabolic disease in humans. Studies over the last 30 years conclude that the protein is a dimer, binding one nucleotide molecule per two proteins, and unlike the related mitochondrial ADP/ATP carrier, does not bind cardiolipin. Here, we have developed novel methods to purify milligram amounts of UCP1 from native sources by using covalent chromatography that, unlike past methods, allows the protein to be prepared in defined conditions, free of excess detergent and lipid. Assessment of purified preparations by TLC reveal that UCP1 retains tightly bound cardiolipin, with a lipid phosphorus content equating to three molecules per protein, like the ADP/ATP carrier. Cardiolipin stabilizes UCP1, as demonstrated by reconstitution experiments and thermostability assays, indicating that the lipid has an integral role in the functioning of the protein, similar to other mitochondrial carriers. Furthermore, we find that UCP1 is not dimeric but monomeric, as indicated by size exclusion analysis, and has a ligand titration profile in isothermal calorimetric measurements that clearly shows that one nucleotide binds per monomer. These findings reveal the fundamental composition of UCP1, which is essential for understanding the mechanism of the protein. Our assessment of the properties of UCP1 indicate that it is not unique among mitochondrial carriers and so is likely to use a common exchange mechanism in its primary function in brown adipose tissue mitochondria.


2008 ◽  
Vol 19 (12) ◽  
pp. 840-847 ◽  
Author(s):  
Sachiko Nomura ◽  
Takashi Ichinose ◽  
Manabu Jinde ◽  
Yu Kawashima ◽  
Kaoru Tachiyashiki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document