scholarly journals Cytosolic deglycosylation process of newly synthesized glycoproteins generates oligomannosides possessing one GlcNAc residue at the reducing end

1998 ◽  
Vol 335 (2) ◽  
pp. 389-396 ◽  
Author(s):  
Sandrine DUVET ◽  
Odette LABIAU ◽  
Anne-Marie MIR ◽  
Daniel KMIÉCIK ◽  
Sharon S. KRAG ◽  
...  

Recent studies on the mechanism of degradation of newly synthesized glycoproteins suggest the involvement of a retrotranslocation of the glycoprotein from the lumen of the rough endoplasmic reticulum into the cytosol, where a deglycosylation process takes place. In the studies reported here, we used a glycosylation mutant of Chinese hamster ovary cells that does not synthesize mannosylphosphoryldolichol and has an increased level of soluble oligomannosides originating from glycoprotein degradation. In the presence of anisomycin, an inhibitor of protein synthesis, we observed an accumulation of glucosylated oligosaccharide-lipid donors (Glc3Man5GlcNAc2-PP-Dol), which are the precursors of the soluble neutral oligosaccharide material. Inhibition of rough endoplasmic reticulum glucosidase(s) by castanospermine led to the formation of Glc3Man5GlcNAc2(OSGn2) (in which OSGn2 is an oligomannoside possessing two GlcNAc residues at its reducing end), which was then retained in the lumen of intracellular vesicles. Thus they were protected during an 8 h chase period from the action of cytosolic chitobiase, which is responsible for the conversion of OSGn2 to oligomannosides possessing one GlcNAc residue at the reducing end (OSGn1). In contrast, when protein synthesis was maintained in the presence of castanospermine, glucosylated oligomannosides (Glc1–3Man5GlcNAc1) were recovered in cytosol. Except for monoglucosylated Man5 species, which are potential substrates for luminal calnexin and calreticulin, the pattern of oligomannosides was similar to that observed on glycoproteins. The occurrence in the cytosol of glucosylated species with one GlcNAc residue at the reducing end implies that the deglycosylation process that generates glucosylated OSGn1 from glycoproteins occurs in the cytosol.

1983 ◽  
Vol 97 (6) ◽  
pp. 1777-1787 ◽  
Author(s):  
J E Bergmann ◽  
S J Singer

An immunoelectron microscopic study was undertaken to survey the intracellular pathway taken by the integral membrane protein (G-protein) of vesicular stomatitis virus from its site of synthesis in the rough endoplasmic reticulum to the plasma membrane of virus-infected Chinese hamster ovary cells. Intracellular transport of the G-protein was synchronized by using a temperature-sensitive mutant of the virus (0-45). At the nonpermissive temperature (39.8 degrees C), the G-protein is synthesized in the cell infected with 0-45, but does not leave the rough endoplasmic reticulum. Upon shifting the temperature to 32 degrees C, the G-protein moves by stages to the plasma membrane. Ultrathin frozen sections of 0-45-infected cells were prepared and indirectly immunolabeled for the G-protein at different times after the temperature shift. By 3 min, the G-protein was seen at high density in saccules at one face of the Golgi apparatus. No large accumulation of G-protein-containing vesicles were observed near this entry face, but a few 50-70-mm electron-dense vesicular structures labeled for G-protein were observed that might be transfer vesicles between the rough endoplasmic reticulum and the Golgi complex. At blebbed sites on the nuclear envelope at these early times there was a suggestion that the G-protein was concentrated, these sites perhaps serving as some of the transitional elements for subsequent transfer of the G-protein from the rough endoplasmic reticulum to the Golgi complex. By 3 min after its initial asymmetric entry into the Golgi complex, the G-protein was uniformly distributed throughout all the saccules of the complex. At later times, after the G-protein left the Golgi complex and was on its way to the plasma membrane, a new class of G-protein-containing vesicles of approximately 200-nm diameter was observed that are probably involved in this stage of the transport process. These data are discussed, and the further prospects of this experimental approach are assessed.


1988 ◽  
Vol 8 (10) ◽  
pp. 4063-4070
Author(s):  
A J Dorner ◽  
M G Krane ◽  
R J Kaufman

GRP78 is localized in the endoplasmic reticulum and associates with improperly folded or underglycosylated proteins. The role of GRP78 in secretion was studied in Chinese hamster ovary cells expressing a tissue plasminogen activator (tPA) variant which lacks potential N-linked glycosylation site sequences because of mutagenesis. The expression of variant tPA resulted in elevated levels of GRP78 and its stable association with tPA. The introduction of antisense GRP78 genes resulted in a two- to threefold reduction in GRP78 levels compared with those of the original cells. Cells with reduced levels of GRP78 secreted two- to threefold-higher levels of tPA activity. tPA expressed in these cells displayed reduced association with GRP78, and a greater proportion was processed to the mature form and secreted. These results demonstrate that reduction of GRP78 level can improve the secretion of an associated protein.


1984 ◽  
Vol 98 (1) ◽  
pp. 108-115 ◽  
Author(s):  
B Storrie ◽  
R R Pool ◽  
M Sachdeva ◽  
K M Maurey ◽  
C Oliver

Horseradish peroxidase (HRP), an enzyme internalized by fluid phase pinocytosis, has been used to study the process by which pinosome contents are delivered to lysosomes in Chinese hamster ovary cells. Pinosome contents were labeled by allowing cells to internalize HRP for 3-5 min. Following various chase times, cells were either processed for HRP and acid phosphatase (AcPase) cytochemistry or homogenized and fractionated in Percoll gradients. In Percoll gradients, pinosomes labeled by a 3-5 min HRP pulse behaved as a vesicle population more dense than plasma membrane and less dense than lysosomes. In pulse-chase experiments, internalized HRP was chased rapidly (3-6 min chase) to a density position intermediate between the "initial" pinocytic vesicle population and lysosomes. With longer chase periods, a progressive accumulation of HRP in more dense vesicles was observed. Correspondence between the HRP distribution and lysosomal marker distribution was reached after a approximately 1-h chase. By electron microscope cytochemistry of intact cells, the predominant class of HRP-positive vesicles after pulse uptakes or a 3-min chase period was characterized by a peripheral rim of reaction product and was AcPase negative. After 10-120-min chase periods, the predominant class of HRP-positive vesicles was characterized by luminal deposits and HRP activity was frequently observed in multivesicular bodies. HRP-positive vesicles after a 10- or 30-min chase were AcPase-positive. No HRP activity was detected in Golgi apparatus. Together these observations indicate that progressive processing of vesicular components of the vacuolar apparatus occurs at both a prelysosomal and lysosomal stage.


Sign in / Sign up

Export Citation Format

Share Document