dense vesicles
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 0)

H-INDEX

16
(FIVE YEARS 0)

2015 ◽  
Vol 59 (3) ◽  
Author(s):  
H. Zhang ◽  
X. Guo ◽  
S. Zhong ◽  
T. Ge ◽  
S. Peng ◽  
...  

The Chinese giant salamander belongs to an old lineage of salamanders and endangered species. Many studies of breeding and disease regarding this amphibian had been implemented. However, the studies on the ultrastructure of this amphibian are rare. In this work, we provide a histological and ultrastructural investigation on posterior esophagus of Chinese giant salamander. The sections of amphibian esophagus were stained by hematoxylin & eosin (H&E). Moreover, the esophageal epithelium was observed by transmission electron microscopy (TEM). The results showed that esophageal epithelium was a single layer epithelium, which consisted of mucous cells and columnar cells. The esophageal glands were present in submucosa. The columnar cells were ciliated. According to the diverging ultrastructure of mucous vesicles, three types of mucous cells could be identified in the esophageal mucosa: i) electron-lucent vesicles mucous cell (ELV-MC); ii) electron-dense vesicles mucous cell (EDV-MC); and iii) mixed vesicles mucous cell (MV-MC).



2013 ◽  
Vol 12 (11) ◽  
pp. 1423-1432 ◽  
Author(s):  
Romain Gibeaux ◽  
Dominic Hoepfner ◽  
Ivan Schlatter ◽  
Claude Antony ◽  
Peter Philippsen

ABSTRACT Ashbya gossypii grows as multinucleated and constantly elongating hyphae. Nuclei are in continuous forward and backward motion, also move during mitosis, and frequently bypass each other. Whereas these nuclear movements are well documented, comparatively little is known about the density and morphology of organelles which very likely influence these movements. To understand the three-dimensional subcellular organization of hyphae at high resolution, we performed large-scale electron tomography of the tip regions in A. gossypii . Here, we present a comprehensive space-filling model in which most membrane-limited organelles including nuclei, mitochondria, endosomes, multivesicular bodies, vacuoles, autophagosomes, peroxisomes, and vesicles are modeled. Nuclei revealed different morphologies and protrusions filled by the nucleolus. Mitochondria are very abundant and form a tubular network with a polarized spherical fraction. The organelles of the degradative pathways show a clustered organization. By analyzing vesicle-like bodies, we identified three size classes of electron-dense vesicles (∼200, ∼150, and ∼100 nm) homogeneously distributed in the cytoplasm which most likely represent peroxisomes. Finally, coated and uncoated vesicles with approximately 40-nm diameters show a polarized distribution toward the hyphal tip with the coated vesicles preferentially localizing at the hyphal periphery.



2013 ◽  
Vol 93 (7) ◽  
pp. 1881-1886 ◽  
Author(s):  
Juliana Giménez

The ultrastructure of spermatogenesis, the euspermatozoa and paraspermatozoa, is investigated in Trophon geversianus. Spermatogenesis follows the general developmental pattern of caenogastropods. Paraspermatid development is characterized by elongation of the cell, concurrent with the appearance of a cytoplasmic elongation at the apex of the cell and the breakdown of the nucleus into small round fragments (caryomerites). Euspermatozoa consist of: a tall, conical acrosomal vesicle (with a invagination); a rod-shaped, highly electron-dense nucleus with an internal axoneme; an elongate midpiece consisting of the axoneme sheathed by helical mitochondrial elements; an elongate glycogen piece; and a short free-tail region. Paraspermatozoa of T. geversianus are vermiform. They contain approximately 12–16 axonemes arranged peripherally, numerous oblong dense vesicles, numerous less dense (round) vesicles, and scattered mitochondria. Most of the euspermatozoal features of T. geversianus are also observed in many neogastropods. However, the presence of the axoneme continuously located inside of the nucleus has not been reported before, and may prove to be a diagnostic feature of the Muricidae.



2010 ◽  
Vol 16 (6) ◽  
pp. 688-698 ◽  
Author(s):  
Alexandre Lobo-da-Cunha ◽  
Elsa Oliveira ◽  
Íris Ferreira ◽  
Rita Coelho ◽  
Gonçalo Calado

AbstractThe posterior esophagus of Bulla striata, running from the gizzard to the stomach, was investigated with light and electron microscopy to obtain new data for a comparative analysis of the digestive system in cephalaspidean opisthobranchs. In this species, the posterior esophagus can be divided into two regions. In the first, the epithelium is formed by columnar cells with apical microvilli embedded in a cuticle. Many epithelial and subepithelial secretory cells are present in this region. In both, electron-lucent secretory vesicles containing filaments and a peripheral round mass of secretory material fill the cytoplasm. These acid mucus-secreting cells may also contain a few dense secretory vesicles. In the second part of the posterior esophagus, the cuticle is absent and the epithelium is ciliated. In this region, epithelial cells may contain larger lipid droplets and glycogen reserves. Subepithelial secretory cells are not present, and in epithelial secretory cells the number of dense vesicles increases, but most secretory cells still contain some electron-lucent vesicles. These cells secrete a mixture of proteins and acid polysaccharides and should be considered seromucous. The secretory cells of the posterior esophagus are significantly different from those previously reported in the anterior esophagus of this herbivorous species.



2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Gergely Gõsi ◽  
Gábor Raffai ◽  
Erzsébet Fehér ◽  
György Acsády ◽  
Emil Monos


2007 ◽  
Vol 7 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Marcio L. Rodrigues ◽  
Ernesto S. Nakayasu ◽  
Debora L. Oliveira ◽  
Leonardo Nimrichter ◽  
Joshua D. Nosanchuk ◽  
...  

ABSTRACT Cryptococcus neoformans produces vesicles containing its major virulence factor, the capsular polysaccharide glucuronoxylomannan (GXM). These vesicles cross the cell wall to reach the extracellular space, where the polysaccharide is supposedly used for capsule growth or delivered into host tissues. In the present study, we characterized vesicle morphology and protein composition by a combination of techniques including electron microscopy, proteomics, enzymatic activity, and serological reactivity. Secretory vesicles in C. neoformans appear to be correlated with exosome-like compartments derived from multivesicular bodies. Extracellular vesicles manifested various sizes and morphologies, including electron-lucid membrane bodies and electron-dense vesicles. Seventy-six proteins were identified by proteomic analysis, including several related to virulence and protection against oxidative stress. Biochemical tests indicated laccase and urease activities in vesicles. In addition, different vesicle proteins were recognized by sera from patients with cryptococcosis. These results reveal an efficient and general mechanism of secretion of pathogenesis-related molecules in C. neoformans, suggesting that extracellular vesicles function as “virulence bags” that deliver a concentrated payload of fungal products to host effector cells and tissues.



Parasitology ◽  
2005 ◽  
Vol 132 (3) ◽  
pp. 427-438 ◽  
Author(s):  
W. L. WONG ◽  
G. P. BRENNAN ◽  
D. W. HALTON ◽  
L. H. S. LIM

A study of the anterior adhesive apparatus (head organs) of Bravohollisia gussevi Lim, 1995 was carried out using light and electron microscopy. The anterior adhesive apparatus or head organs in B. gussevi comprise 6 circular openings or apertures in the antero-lateral region, associated pits lined with specialized microvillous tegument that differ from the general body tegument, a bundle of ducts, and uninucleate gland cells located lateral to the pharynx. The uninucleate glands of the anterior adhesive apparatus (head organs) comprise 2 types of cells, one kind of cell producing rod-like bodies (S1) and the other oval bodies (S2). The S1 bodies are filled with numerous, less electron-dense vesicles in an electron-dense matrix, while S2 bodies have no vesicles but contain a more homogeneous electron-dense matrix. Interlinking band-like structures were observed between S1 bodies. Similar band-like structures were found between S2 bodies. The formation of S1 bodies was followed by transmission electron microscopy. However, the formation of S2 bodies was unclear and could not be resolved. Uniciliated structures were also observed around the openings of the anterior adhesive apparatus. Each uniciliated structure is usually associated with an opening of a gland cell producing granular, electron-dense, secretory bodies, which differ from the secretions produced by the lateral gland cells of the anterior adhesive apparatus.



2002 ◽  
Vol 156 (2) ◽  
pp. 271-286 ◽  
Author(s):  
Edina Harsay ◽  
Randy Schekman

Exocytic vesicles that accumulate in a temperature-sensitive sec6 mutant at a restrictive temperature can be separated into at least two populations with different buoyant densities and unique cargo molecules. Using a sec6 mutant background to isolate vesicles, we have found that vacuolar protein sorting mutants that block an endosome-mediated route to the vacuole,including vps1, pep12, vps4, and a temperature-sensitive clathrin mutant, missort cargo normally transported by dense exocytic vesicles, such as invertase, into light exocytic vesicles, whereas transport of cargo specific to the light exocytic vesicles appears unaffected. Immunoisolation experiments confirm that missorting, rather than a changed property of the normally dense vesicles, is responsible for the altered density gradient fractionation profile. The vps41Δ and apl6Δmutants, which block transport of only the subset of vacuolar proteins that bypasses endosomes, sort exocytic cargo normally. Furthermore, avps10Δ sec6 mutant, which lacks the sorting receptor for carboxypeptidase Y (CPY), accumulates both invertase and CPY in dense vesicles. These results suggest that at least one branch of the yeast exocytic pathway transits through endosomes before reaching the cell surface. Consistent with this possibility, we show that immunoisolated clathrin-coated vesicles contain invertase.



Parasitology ◽  
2002 ◽  
Vol 124 (1) ◽  
pp. 53-68 ◽  
Author(s):  
J. CABLE ◽  
R. C. TINSLEY ◽  
P. D. HARRIS

Viviparous gyrodactylid monogeneans which are detached from their host may form an important source of infection in fish communities. This is particularly significant for these ectoparasites which have no specific free-living stage and where transmission usually occurs through transfer of adult parasites when fish come into close contact. In this study, in vitro survival of Gyrodactylus gasterostei was correlated with changes in tissue ultrastructure of parents and their embryos during detachment and following return to a host. At 10 °C, detached worms survived for up to 89 h (50% survival = 20 h) with mortality influenced by both age-independent and age-dependent factors. The gastrodermis of attached, fed parasites is syncytial and contains a variety of vesicles and feeding vacuoles. However, following detachment and starvation, degenerative changes occur within the gastrodermis, eventually leading to marked damage to the embryo/s. When starved worms reattached to a fish, they began browsing on host epithelial cells within 1 min and ultrastructural evidence for phagocytic activity in the gastrodermis was detected after 5 min. Putative waste vacuoles increased in abundance after 5–30 min on the new host, coinciding with the reappearance of electron-dense vesicles and possibly indicating completion of the first intracellular cycle of digestion. Parental feeding directly influenced the normal cyclical maturation and regression of the uterine lining between births. In extreme cases, starvation led to detached parasites (6·1%) aborting their embryos. However, even short periods off the host influenced development and survival of embryos, suggesting that temporary interruption of nutrient flow to the embryo can significantly affect gyrodactylid reproductive rates.



Sign in / Sign up

Export Citation Format

Share Document