scholarly journals Determination of the calcium-binding sites of the C2 domain of protein kinase Cα that are critical for its translocation to the plasma membrane

1999 ◽  
Vol 337 (3) ◽  
pp. 513-521 ◽  
Author(s):  
Senena CORBALÁN-GARCÍA ◽  
José A. RODRÍGUEZ-ALFARO ◽  
Juan C. GÓMEZ-FERNÁNDEZ

The C2 domain is a conserved protein module present in various signal-transducing proteins. To investigate the function of the C2 domain of protein kinase Cα (PKCα), we have generated a recombinant glutathione S-transferase-fused C2 domain from rat PKCα, PKC-C2. We found that PKC-C2 binds with high affinity (half-maximal binding at 0.6 µM) to lipid vesicles containing the negatively charged phospholipid phosphatidylserine. When expressed into COS and HeLa cells, most of the PKC-C2 was found at the plasma membrane, whereas when the cells were depleted of Ca2+ by incubation with EGTA and ionophore, the C2 domain was localized preferentially in the cytosol. Ca2+ titration was performed in vivo and the critical Ca2+ concentration ranged from 0.1 to 0.32 µM. We also identified, by site-directed mutagenesis, three aspartic residues critical for that Ca2+ interaction, namely Asp-187, Asp-246 and Asp-248. Mutation of these residues to asparagine, to abolish their negative charge, resulted in a domain expressed as the same extension as wild-type protein that could interact in vitro with neither Ca2+ nor phosphatidylserine. Overexpression of these mutants into COS and HeLa cells also showed that they cannot localize at the plasma membrane, as demonstrated by immunofluorescence staining and subcellular fractionation. These results suggest that the Ca2+-binding site might be involved in promoting the interaction of the C2 domain of PKCα with the plasma membrane in vivo.

2006 ◽  
Vol 17 (1) ◽  
pp. 56-66 ◽  
Author(s):  
John H. Evans ◽  
Diana Murray ◽  
Christina C. Leslie ◽  
Joseph J. Falke

The C2 domain of protein kinase Cα (PKCα) controls the translocation of this kinase from the cytoplasm to the plasma membrane during cytoplasmic Ca2+ signals. The present study uses intracellular coimaging of fluorescent fusion proteins and an in vitro FRET membrane-binding assay to further investigate the nature of this translocation. We find that Ca2+-activated PKCα and its isolated C2 domain localize exclusively to the plasma membrane in vivo and that a plasma membrane lipid, phosphatidylinositol-4,5-bisphosphate (PIP2), dramatically enhances the Ca2+-triggered binding of the C2 domain to membranes in vitro. Similarly, a hybrid construct substituting the PKCα Ca2+-binding loops (CBLs) and PIP2 binding site (β-strands 3–4) into a different C2 domain exhibits native Ca2+-triggered targeting to plasma membrane and recognizes PIP2. Conversely, a hybrid containing the CBLs but lacking the PIP2 site translocates primarily to trans-Golgi network (TGN) and fails to recognize PIP2. Similarly, PKCα C2 domains possessing mutations in the PIP2 site target primarily to TGN and fail to recognize PIP2. Overall, these findings demonstrate that the CBLs are essential for Ca2+-triggered membrane binding but are not sufficient for specific plasma membrane targeting. Instead, targeting specificity is provided by basic residues on β-strands 3–4, which bind to plasma membrane PIP2.


2004 ◽  
Vol 15 (1) ◽  
pp. 371-383 ◽  
Author(s):  
John H. Evans ◽  
Stefan H. Gerber ◽  
Diana Murray ◽  
Christina C. Leslie

Translocation of cytosolic phospholipase A2 (cPLA2) to Golgi and ER in response to intracellular calcium mobilization is regulated by its calcium-dependent lipid-binding, or C2, domain. Although well studied in vitro, the biochemical characteristics of the cPLA2C2 domain offer no predictive value in determining its intracellular targeting. To understand the molecular basis for cPLA2C2 targeting in vivo, the intracellular targets of the synaptotagmin 1 C2A (Syt1C2A) and protein kinase Cα C2 (PKCαC2) domains were identified in Madin-Darby canine kidney cells and compared with that of hybrid C2 domains containing the calcium binding loops from cPLA2C2 on Syt1C2A and PKCαC2 domain backbones. In response to an intracellular calcium increase, PKCαC2 targeted plasma membrane regions rich in phosphatidylinositol-4,5-bisphosphate, and Syt1C2A displayed a biphasic targeting pattern, first targeting phosphatidylinositol-4,5-bisphosphate-rich regions in the plasma membrane and then the trans-Golgi network. In contrast, the Syt1C2A/cPLA2C2 and PKCαC2/cPLA2C2 hybrids targeted Golgi/ER and colocalized with cPLA2C2. The electrostatic properties of these hybrids suggested that the membrane binding mechanism was similar to cPLA2C2, but not PKCαC2 or Syt1C2A. These results suggest that primarily calcium binding loops 1 and 3 encode structural information specifying Golgi/ER targeting of cPLA2C2 and the hybrid domains.


2011 ◽  
Vol 441 (1) ◽  
pp. 189-198 ◽  
Author(s):  
Christine A. McCary ◽  
Youngdae Yoon ◽  
Candace Panagabko ◽  
Wonhwa Cho ◽  
Jeffrey Atkinson ◽  
...  

Vitamin E isoforms have opposing regulatory effects on leucocyte recruitment during inflammation. Furthermore, in vitro, vitamin E isoforms have opposing effects on leucocyte migration across endothelial cells by regulating VCAM (vascular cell-adhesion molecule)-1 activation of endothelial cell PKCα (protein kinase Cα). However, it is not known whether tocopherols directly regulate cofactor-dependent or oxidative activation of PKCα. We report in the present paper that cofactor-dependent activation of recombinant PKCα was increased by γ-tocopherol and was inhibited by α-tocopherol. Oxidative activation of PKCα was inhibited by α-tocopherol at a 10-fold lower concentration than γ-tocopherol. In binding studies, NBD (7-nitrobenz-2-oxa-1,3-diazole)-tagged α-tocopherol directly bound to full-length PKCα or the PKCα-C1a domain, but not PKCζ. NBD-tagged α-tocopherol binding to PKCα or the PKCα-C1a domain was blocked by diacylglycerol, α-tocopherol, γ-tocopherol and retinol, but not by cholesterol or PS (phosphatidylserine). Tocopherols enhanced PKCα-C2 domain binding to PS-containing lipid vesicles. In contrast, the PKCα-C2 domain did not bind to lipid vesicles containing tocopherol without PS. The PKCα-C1b domain did not bind to vesicles containing tocopherol and PS. In summary, α-tocopherol and γ-tocopherol bind the diacylglycerol-binding site on PKCα-C1a and can enhance PKCα-C2 binding to PS-containing vesicles. Thus the tocopherols can function as agonists or antagonists for differential regulation of PKCα.


1992 ◽  
Vol 102 (1) ◽  
pp. 91-102 ◽  
Author(s):  
M. Kallajoki ◽  
K. Weber ◽  
M. Osborn

The SPN antigen plays an essential role in mitosis, since microinjection of antibodies causes mitotic arrest. Here we show, by examination of the relative locations of SPN antigen, the centrosomal 5051 antigen and tubulin in normal mitotic, and in taxol-treated mitotic cells, that the SPN antigen is involved in organizing the microtubules of the spindle. The 210 kDa protein defined as SPN antigen relocates from the nuclear matrix to the centrosome at prophase, remains associated with the poles at metaphase and anaphase, and dissociates from the centrosomes in telophase. In taxol-treated mitotic cells, SPN staining shows a striking redistribution while 5051 antigen remains associated with centrosomes. SPN antigen is seen at the plasma membrane end of the rearranged microtubules. SPN antigen is always at the center of the multiple microtubule asters (5 to 20 per cell) induced by taxol, whereas 5051 again remains associated with the centrosomal complex (1 to 2 foci per cell). Microtubule nucleation is associated with the SPN antigen rather than with the 5051 antigen. Microinjection of SPN-3 antibody into taxol-treated mitotic PtK2 cells causes disruption of the asters as judged by tubulin staining of the same cells. Finally, SPN antigen extracted in soluble form from synchronized mitotic HeLa cells binds to, and sediments with, pig brain microtubules stabilized by taxol. This association of SPN antigen with microtubules is partially dissociated by 0.5 M NaCl but not by 5 mM ATP. Thus SPN antigen binds to microtubules in vitro and seems to act as a microtubular minus-end organizer in mitotic cells in vivo.


1999 ◽  
Vol 277 (6) ◽  
pp. C1202-C1209 ◽  
Author(s):  
Robert S. Haworth ◽  
James Sinnett-Smith ◽  
Enrique Rozengurt ◽  
Metin Avkiran

The regulation of plasma membrane Na+/H+exchanger (NHE) activity by protein kinase D (PKD), a novel protein kinase C- and phorbol ester-regulated kinase, was investigated. To determine the effect of PKD on NHE activity in vivo, intracellular pH (pHi) measurements were made in COS-7 cells by microepifluorescence using the pH indicator cSNARF-1. Cells were transfected with empty vector (control), wild-type PKD, or its kinase-deficient mutant PKD-K618M, together with green fluorescent protein (GFP). NHE activity, as reflected by the rate of acid efflux ( J H), was determined in single GFP-positive cells following intracellular acidification. Overexpression of wild-type PKD had no significant effect on J H(3.48 ± 0.25 vs. 3.78 ± 0.24 mM/min in control at pHi 7.0). In contrast, overexpression of PKD-K618M increased J H (5.31 ± 0.57 mM/min at pHi 7.0; P < 0.05 vs. control). Transfection with these constructs produced similar effects also in A-10 cells, indicating that native PKD may have an inhibitory effect on NHE in both cell types, which is relieved by a dominant-negative action of PKD-K618M. Exposure of COS-7 cells to phorbol ester significantly increased J H in control cells but failed to do so in cells overexpressing either wild-type PKD (due to inhibition by the overexpressed PKD) or PKD-K618M (because basal J Hwas already near maximal). A fusion protein containing the cytosolic regulatory domain (amino acids 637–815) of NHE1 (the ubiquitous NHE isoform) was phosphorylated in vitro by wild-type PKD, but with low stoichiometry. These data suggest that PKD inhibits NHE activity, probably through an indirect mechanism, and represents a novel pathway in the regulation of the exchanger.


2003 ◽  
Vol 278 (12) ◽  
pp. 10282-10290 ◽  
Author(s):  
Stephen R. Bolsover ◽  
Juan C. Gomez-Fernandez ◽  
Senena Corbalan-Garcia

2009 ◽  
Vol 7 (10) ◽  
pp. 1704-1713 ◽  
Author(s):  
Heather Francis ◽  
Paolo Onori ◽  
Eugenio Gaudio ◽  
Antonio Franchitto ◽  
Sharon DeMorrow ◽  
...  

2005 ◽  
Vol 16 (6) ◽  
pp. 2848-2861 ◽  
Author(s):  
Consuelo Marín-Vicente ◽  
Juan C. Gómez-Fernández ◽  
Senena Corbalán-García

Signal transduction through protein kinase Cs (PKCs) strongly depends on their subcellular localization. Here, we investigate the molecular determinants of PKCα localization by using a model system of neural growth factor (NGF)-differentiated pheochromocytoma (PC12) cells and extracellular stimulation with ATP. Strikingly, the Ca2+ influx, initiated by the ATP stimulation of P2X receptors, rather than the Ca2+ released from the intracellular stores, was the driving force behind the translocation of PKCα to the plasma membrane. Furthermore, the localization process depended on two regions of the C2 domain: the Ca2+-binding region and the lysine-rich cluster, which bind Ca2+ and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], respectively. It was demonstrated that diacylglycerol was not involved in the localization of PKCα through its C1 domain, and in lieu, the presence of PtdIns(4,5)P2 increased the permanence of PKCα in the plasma membrane. Finally, it also was shown that ATP cooperated with NGF during the differentiation process of PC12 cells by increasing the length of the neurites, an effect that was inhibited when the cells were incubated in the presence of a specific inhibitor of PKCα, suggesting a possible role for this isoenzyme in the neural differentiation process. Overall, these results show a novel mechanism of PKCα activation in differentiated PC12 cells, where Ca2+ influx, together with the endogenous PtdIns(4,5)P2, anchor PKCα to the plasma membrane through two distinct motifs of its C2 domain, leading to enzyme activation.


Sign in / Sign up

Export Citation Format

Share Document