scholarly journals Mitogen-activated protein kinase mediates erythropoietin-induced phosphorylation of the TAL1/SCL transcription factor in murine proerythroblasts

1999 ◽  
Vol 343 (3) ◽  
pp. 615-620 ◽  
Author(s):  
Tong TANG ◽  
K. S. Srinivasa PRASAD ◽  
Mark J. KOURY ◽  
Stephen J. BRANDT

Ectopic expression of the basic helix-loop-helix transcription factor TAL1 (or SCL) is the most frequent gain-of-function mutation in T-cell acute lymphoblastic leukaemia. Gene-knockout studies in mice have demonstrated that TAL1 is required for embryonic and adult haematopoiesis, and considerable evidence suggests it also has important functions in terminal erythroid differentiation. We reported previously that TAL1 phosphorylation is stimulated by erythropoietin in splenic proerythroblasts isolated from mice infected with the anaemia-inducing strain of Friend virus and show here the signalling pathway responsible. Erythropoietin was found to stimulate nuclear mitogen-activated protein kinase activity in addition to TAL1 protein phosphorylation, both of which were quantitatively inhibited by the mitogen-activated protein kinase kinase inhibitor PD 098059 and the phosphatidylinositol 3-kinase inhibitor wortmannin. Tryptic phosphopeptide analysis of radiolabelled TAL1 immunoprecipitated from nuclear extracts of Friend virus-induced proerythroblasts revealed that phosphorylation of Ser122, shown previously to be a substrate for the mitogen-activated protein kinase ERK1 (extracellular signal-regulated protein kinase) in vitro, was specifically, although not exclusively, increased by erythropoietin and inhibited by wortmannin and PD 098059. These results are consistent with an erythropoietin-stimulated signalling pathway in which there is direct activation of a mitogen-activated protein kinase kinase by phosphatidylinositol 3-kinase and identify TAL1 as one of its nuclear targets. These data suggest, in addition, a specific mechanism by which the principal regulator of erythroid differentiation could enhance TAL1 function, in addition to increasing its expression.

Cancer ◽  
2016 ◽  
Vol 122 (12) ◽  
pp. 1871-1879 ◽  
Author(s):  
Gautam Borthakur ◽  
Leslie Popplewell ◽  
Michael Boyiadzis ◽  
James Foran ◽  
Uwe Platzbecker ◽  
...  

Blood ◽  
2014 ◽  
Vol 123 (7) ◽  
pp. 1102-1112 ◽  
Author(s):  
Tam Duong ◽  
Katarzyna Koltowska ◽  
Cathy Pichol-Thievend ◽  
Ludovic Le Guen ◽  
Frank Fontaine ◽  
...  

Key Points Haploinsufficiency of Sox18 reveals an important role for VEGFD in regulating blood vascular development in vivo in vertebrates. VEGFD acts through mitogen-activated protein kinase kinase–extracellular signal-regulated kinase to modulate the activity and nuclear concentration of endothelial-specific transcription factor SOX18.


Sign in / Sign up

Export Citation Format

Share Document