scholarly journals Role for the microtubule cytoskeleton in GLUT4 vesicle trafficking and in the regulation of insulin-stimulated glucose uptake

2000 ◽  
Vol 352 (2) ◽  
pp. 267-276 ◽  
Author(s):  
Laura M. FLETCHER ◽  
Gavin I. WELSH ◽  
Paru B. OATEY ◽  
Jeremy M. TAVARÉ

Insulin stimulates glucose uptake into adipocytes by promoting the translocation of the glucose transporter isoform 4 (GLUT4) from intracellular vesicles to the plasma membrane. In 3T3-L1 adipocytes GLUT4 resides both in an endosomal pool, together with transferrin receptors, and in a unique pool termed ‘GLUT4 storage vesicles’(GSVs), which excludes endosomal proteins. The trafficking of GLUT4 vesicles was studied in living 3T3-L1 adipocytes by time-lapse confocal microscopy of GLUT4 tagged with green fluorescent protein. GLUT4 vesicles exhibited two types of motion: rapid vibrations around a point and short (generally less than 10µm) linear movements. The linear movements were completely blocked by incubation of the cells in the presence of microtubule-depolymerizing agents. This suggests that a subpopulation of GLUT4 vesicles can exhibit motor-driven movements along microtubules. Upon further examination, microtubule depolymerization inhibited insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane by approx. 40%, but had no effect on insulin-induced translocation of the transferrin receptor to the plasma membrane from endosomes. We propose that an intact microtubule cytoskeleton may be required for optimal trafficking of GLUT4 present in the GSV pool, but not that resident in the endosomal pool.

1997 ◽  
Vol 327 (3) ◽  
pp. 637-642 ◽  
Author(s):  
B. Paru OATEY ◽  
David H. J. VAN WEERING ◽  
P. Stephen DOBSON ◽  
W. Gwyn GOULD ◽  
Jeremy M. TAVARÉ

Insulin stimulates glucose uptake into its target cells by a process which involves the translocation of the GLUT4 isoform of glucose transporter from an intracellular vesicular compartment(s) to the plasma membrane. The step(s) at which insulin acts in the vesicle trafficking pathway (e.g. vesicle movement or fusion with the plasma membrane) is not known. We expressed a green-fluorescent protein-GLUT4 (GFP-GLUT4) chimaera in 3T3 L1 adipocytes. The chimaera was expressed in vesicles located throughout the cytoplasm and also close to the plasma membrane. Insulin promoted a substantial translocation of GFP-GLUT4 to the plasma membrane. Time-lapse confocal microscopy demonstrated that the majority of GFP-GLUT4-containing vesicles in the basal state were relatively static, as if tethered (or attached) to an intracellular structure. A proportion (approx. 5%) of the vesicles spontaneously lost their tether, and were observed to move rapidly within the cell. Other vesicles appear to be tethered only on one edge and were observed in a rapid stretching motion. The data support a model in which GLUT4-containing vesicles are tightly tethered to an intracellular structure(s), and indicate that a primary site of insulin action must be to release these vesicles, allowing them to then translocate to and fuse with the plasma membrane.


1999 ◽  
Vol 190 (4) ◽  
pp. 509-522 ◽  
Author(s):  
Thierry Vasselon ◽  
Eric Hailman ◽  
Rolf Thieringer ◽  
Patricia A. Detmers

Lipopolysaccharide (LPS) fluorescently labeled with boron dipyrromethane (BODIPY) first binds to the plasma membrane of CD14-expressing cells and is subsequently internalized. Intracellular LPS appears in small vesicles near the cell surface and later in larger, punctate structures identified as the Golgi apparatus. To determine if membrane (m)CD14 directs the movement of LPS to the Golgi apparatus, an mCD14 chimera containing enhanced green fluorescent protein (mCD14–EGFP) was used to follow trafficking of mCD14 and BODIPY–LPS in stable transfectants. The chimera was expressed strongly on the cell surface and also in a Golgi complex–like structure. mCD14–EGFP was functional in mediating binding of and responses to LPS. BODIPY–LPS presented to the transfectants as complexes with soluble CD14 first colocalized with mCD14–EGFP on the cell surface. However, within 5–10 min, the BODIPY–LPS distributed to intracellular vesicles that did not contain mCD14–EGFP, indicating that mCD14 did not accompany LPS during endocytic movement. These results suggest that monomeric LPS is transferred out of mCD14 at the plasma membrane and traffics within the cell independently of mCD14. In contrast, aggregates of LPS were internalized in association with mCD14, suggesting that LPS clearance occurs via a pathway distinct from that which leads to signaling via monomeric LPS.


1998 ◽  
Vol 143 (6) ◽  
pp. 1505-1521 ◽  
Author(s):  
Brian Storrie ◽  
Jamie White ◽  
Sabine Röttger ◽  
Ernst H.K. Stelzer ◽  
Tatsuo Suganuma ◽  
...  

During microtubule depolymerization, the central, juxtanuclear Golgi apparatus scatters to multiple peripheral sites. We have tested here whether such scattering is due to a fragmentation process and subsequent outward tracking of Golgi units or if peripheral Golgi elements reform through a novel recycling pathway. To mark the Golgi in HeLa cells, we stably expressed the Golgi stack enzyme N-acetylgalactosaminyltransferase-2 (GalNAc-T2) fused to the green fluorescent protein (GFP) or to an 11–amino acid epitope, VSV-G (VSV), and the trans/TGN enzyme β1,4-galactosyltransferase (GalT) fused to GFP. After nocodazole addition, time-lapse microscopy of GalNAc-T2–GFP and GalT–GFP revealed that scattered Golgi elements appeared abruptly and that no Golgi fragments tracked outward from the compact, juxtanuclear Golgi complex. Once formed, the scattered structures were relatively stable in fluorescence intensity for tens of minutes. During the entire process of dispersal, immunogold labeling for GalNAc-T2–VSV and GalT showed that these were continuously concentrated over stacked Golgi cisternae and tubulovesicular Golgi structures similar to untreated cells, suggesting that polarized Golgi stacks reform rapidly at scattered sites. In fluorescence recovery after photobleaching over a narrow (FRAP) or wide area (FRAP-W) experiments, peripheral Golgi stacks continuously exchanged resident proteins with each other through what appeared to be an ER intermediate. That Golgi enzymes cycle through the ER was confirmed by microinjecting the dominant-negative mutant of Sar1 (Sar1pdn) blocking ER export. Sar1pdn was either microinjected into untreated or nocodazole-treated cells in the presence of protein synthesis inhibitors. In both cases, this caused a gradual accumulation of GalNAc-T2–VSV in the ER. Few to no peripheral Golgi elements were seen in the nocodazole-treated cells microinjected with Sar1pdn. In conclusion, we have shown that Golgi-resident glycosylation enzymes recycle through the ER and that this novel pathway is the likely explanation for the nocodazole-induced Golgi scattering observed in interphase cells.


2000 ◽  
Vol 20 (1) ◽  
pp. 379-388 ◽  
Author(s):  
Debbie C. Thurmond ◽  
Makoto Kanzaki ◽  
Ahmir H. Khan ◽  
Jeffrey E. Pessin

ABSTRACT To examine the functional role of the interaction between Munc18c and syntaxin 4 in the regulation of GLUT4 translocation in 3T3L1 adipocytes, we assessed the effects of introducing three different peptide fragments (20 to 24 amino acids) of Munc18c from evolutionarily conserved regions of the Sec1 protein family predicted to be solvent exposed. One peptide, termed 18c/pep3, inhibited the binding of full-length Munc18c to syntaxin 4, whereas expression of the other two peptides had no effect. In parallel, microinjection of 18c/pep3 but not a control peptide inhibited the insulin-stimulated translocation of endogenous GLUT4 and insulin-responsive amino peptidase (IRAP) to the plasma membrane. In addition, expression of 18c/pep3 prevented the insulin-stimulated fusion of endogenous and enhanced green fluorescent protein epitope-tagged GLUT4- and IRAP-containing vesicles into the plasma membrane, as assessed by intact cell immunofluorescence. However, unlike the pattern of inhibition seen with full-length Munc18c expression, cells expressing 18c/pep3 displayed discrete clusters of GLUT4 abd IRAP storage vesicles at the cell surface which were not contiguous with the plasma membrane. Together, these data suggest that the interaction between Munc18c and syntaxin 4 is required for the integration of GLUT4 and IRAP storage vesicles into the plasma membrane but is not necessary for the insulin-stimulated trafficking to and association with the cell surface.


Endocrinology ◽  
2010 ◽  
Vol 151 (10) ◽  
pp. 4665-4677 ◽  
Author(s):  
A. E. Contreras-Ferrat ◽  
B. Toro ◽  
R. Bravo ◽  
V. Parra ◽  
C. Vásquez ◽  
...  

Intracellular calcium levels ([Ca2+]i) and glucose uptake are central to cardiomyocyte physiology, yet connections between them have not been studied. We investigated whether insulin regulates [Ca2+]i in cultured cardiomyocytes, the participating mechanisms, and their influence on glucose uptake via SLC2 family of facilitative glucose transporter 4 (GLUT4). Primary neonatal rat cardiomyocytes were preloaded with the Ca2+ fluorescent dye fluo3-acetoxymethyl ester compound (AM) and visualized by confocal microscopy. Ca2+ transport pathways were selectively targeted by chemical and molecular inhibition. Glucose uptake was assessed using [3H]2-deoxyglucose, and surface GLUT4 levels were quantified in nonpermeabilized cardiomyocytes transfected with GLUT4-myc-enhanced green fluorescent protein. Insulin elicited a fast, two-component, transient increase in [Ca2+]i. Nifedipine and ryanodine prevented only the first component. The second one was reduced by inositol-1,4,5-trisphosphate (IP3)-receptor-selective inhibitors (xestospongin C, 2 amino-ethoxydiphenylborate), by type 2 IP3 receptor knockdown via small interfering RNA or by transfected Gβγ peptidic inhibitor βARKct. Insulin-stimulated glucose uptake was prevented by bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid-AM, 2-amino-ethoxydiphenylborate, and βARK-ct but not by nifedipine or ryanodine. Similarly, insulin-dependent exofacial exposure of GLUT4-myc-enhanced green fluorescent protein was inhibited by bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid-AM and xestospongin C but not by nifedipine. Phosphatidylinositol 3-kinase and Akt were also required for the second phase of Ca2+ release and GLUT4 translocation. Transfected dominant-negative phosphatidylinositol 3-kinase γ inhibited the latter. In conclusion, in primary neonatal cardiomyocytes, insulin induces an important component of Ca2+ release via IP3 receptor. This component signals to glucose uptake via GLUT4, revealing a so-far unrealized contribution of IP3-sensitive Ca2+ stores to insulin action. This pathway may influence cardiac metabolism in conditions yet to be explored in adult myocardium.


2012 ◽  
Vol 23 (17) ◽  
pp. 3370-3379 ◽  
Author(s):  
Anita A. Wasik ◽  
Zydrune Polianskyte-Prause ◽  
Meng-Qiu Dong ◽  
Andrey S. Shaw ◽  
John R. Yates ◽  
...  

Podocytes are insulin-sensitive and take up glucose in response to insulin. This requires nephrin, which interacts with vesicle-associated membrane protein 2 (VAMP2) on GLUT4 storage vesicles (GSVs) and facilitates their fusion with the plasma membrane. In this paper, we show that the filament-forming GTPase septin 7 is expressed in podocytes and associates with CD2-associated protein (CD2AP) and nephrin, both essential for glomerular ultrafiltration. In addition, septin 7 coimmunoprecipitates with VAMP2. Subcellular fractionation of cultured podocytes revealed that septin 7 is found in both cytoplasmic and membrane fractions, and immunofluorescence microscopy showed that septin 7 is expressed in a filamentous pattern and is also found on vesicles and the plasma membrane. The filamentous localization of septin 7 depends on CD2AP and intact actin organization. A 2-deoxy-d-glucose uptake assay indicates that depletion of septin 7 by small interfering RNA or alteration of septin assembly by forchlorfenuron facilitates glucose uptake into cells and further, knockdown of septin 7 increased the interaction of VAMP2 with nephrin and syntaxin 4. The data indicate that septin 7 hinders GSV trafficking and further, the interaction of septin 7 with nephrin in glomeruli suggests that septin 7 may participate in the regulation of glucose transport in podocytes.


2010 ◽  
Vol 427 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Zhi-Jie Cheng ◽  
Raman Deep Singh ◽  
Teng-ke Wang ◽  
Eileen L. Holicky ◽  
Christine L. Wheatley ◽  
...  

Insulin stimulates glucose transport in fat and skeletal muscle cells primarily by inducing the translocation of GLUT4 (glucose transporter isoform 4) to the PM (plasma membrane) from specialized GSVs (GLUT4 storage vesicles). Glycosphingolipids are components of membrane microdomains and are involved in insulin-regulated glucose transport. Cellular glycosphingolipids decrease during adipocyte differentiation and have been suggested to be involved in adipocyte function. In the present study, we investigated the role of glycosphingolipids in regulating GLUT4 translocation. We decreased glycosphingolipids in 3T3-L1 adipocytes using glycosphingolipid synthesis inhibitors and investigated the effects on GLUT4 translocation using immunocytochemistry, preparation of PM sheets, isolation of GSVs and FRAP (fluorescence recovery after photobleaching) of GLUT4–GFP (green fluorescent protein) in intracellular structures. Glycosphingolipids were located in endosomal vesicles in pre-adipocytes and redistributed to the PM with decreased expression at day 2 after initiation of differentiation. In fully differentiated adipocytes, depletion of glycosphingolipids dramatically accelerated insulin-stimulated GLUT4 translocation. Although insulin-induced phosphorylation of IRS (insulin receptor substrate) and Akt remained intact in glycosphingolipid-depleted cells, both in vitro budding of GLUT4 vesicles and FRAP of GLUT4–GFP on GSVs were stimulated. Glycosphingolipid depletion also enhanced the insulin-induced translocation of VAMP2 (vesicle-associated membrane protein 2), but not the transferrin receptor or cellubrevin, indicating that the effect of glycosphingolipids was specific to VAMP2-positive GSVs. Our results strongly suggest that decreasing glycosphingolipid levels promotes the formation of GSVs and, thus, GLUT4 translocation. These studies provide a mechanistic basis for recent studies showing that inhibition of glycosphingolipid synthesis improves glycaemic control and enhances insulin sensitivity in animal models of Type 2 diabetes.


1999 ◽  
Vol 339 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Arthur L. KRUCKEBERG ◽  
Ling YE ◽  
Jan A. BERDEN ◽  
Karel van DAM

The Hxt2 glucose transport protein of Saccharomyces cerevisiae was genetically fused at its C-terminus with the green fluorescent protein (GFP). The Hxt2-GFP fusion protein is a functional hexose transporter: it restored growth on glucose to a strain bearing null mutations in the hexose transporter genes GAL2 and HXT1 to HXT7. Furthermore, its glucose transport activity in this null strain was not markedly different from that of the wild-type Hxt2 protein. We calculated from the fluorescence level and transport kinetics that induced cells had 1.4×105 Hxt2-GFP molecules per cell, and that the catalytic-centre activity of the Hxt2-GFP molecule in vivo is 53 s-1 at 30 °C. Expression of Hxt2-GFP was induced by growth at low concentrations of glucose. Under inducing conditions the Hxt2-GFP fluorescence was localized to the plasma membrane. In a strain impaired in the fusion of secretory vesicles with the plasma membrane, the fluorescence accumulated in the cytoplasm. When induced cells were treated with high concentrations of glucose, the fluorescence was redistributed to the vacuole within 4 h. When endocytosis was genetically blocked, the fluorescence remained in the plasma membrane after treatment with high concentrations of glucose.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


2001 ◽  
Vol 7 (S2) ◽  
pp. 34-35
Author(s):  
Derek Toomre ◽  
Patrick Keller ◽  
Elena Diaz ◽  
Jamie White ◽  
Kai Simons

Post-Golgi sorting of different classes of newly synthesized proteins and lipids is central to the generation and maintenance of cellular polarity. to directly visualize the dynamics and location of apical/basolateral sorting and trafficking we used fast time-lapse multicolor video microscopy in living cells. Specifically, green fluorescent protein color variants (cyan, CFP; yellow, YFP) of apical cargo (GPI-anchored) and basolateral cargo (vesicular stomatitis virus glycoprotein, VSVG) were generated; see FIG 1. Fast dual color fluorescence video microscopy allowed visualization with high temporal and spatial resolution. Our studies revealed that apical and basolateral cargo progressively segregated into large domains in Golgi/TGN structures, excluded resident proteins, and exited in separate transport containers. These carries remained distinct and did not merge with endocytic structures en route to the plasma membrane. Interestingly, our data suggest that the primary sorting occurs by lateral segregation in the Golgi, prior to budding (FIG 2). Further characterization of morphological differences of apical versus basolateral transport carriers was achieved using a specialized microscopy technique called total internal reflection (TIR) microscopy. with this approach only the bottom of the cell (<100 nm) was illuminated by an exponentially decaying evanescent “wave” of light. A series of images, taken at ∼1 second intervals, shows a bright “flash” of fluorescence when the vesicle fuse with the plasma membrane and the fluorophore diffuses into the plasma membrane (FIG 3).


Sign in / Sign up

Export Citation Format

Share Document