uptake assay
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 28)

H-INDEX

24
(FIVE YEARS 0)

2022 ◽  
Vol 15 ◽  
Author(s):  
Pauline Beckers ◽  
Olaya Lara ◽  
Ines Belo do Nascimento ◽  
Nathalie Desmet ◽  
Ann Massie ◽  
...  

Disruption of the glutamatergic homeostasis is commonly observed in neurological diseases and has been frequently correlated with the altered expression and/or function of astrocytic high-affinity glutamate transporters. There is, however, a growing interest for the role of the cystine-glutamate exchanger system xc– in controlling glutamate transmission. This exchanger is predominantly expressed in glial cells, especially in microglia and astrocytes, and its dysregulation has been documented in diverse neurological conditions. While most studies have focused on measuring the expression of its specific subunit xCT by RT-qPCR or by Western blotting, the activity of this exchanger in tissue samples remains poorly examined. Indeed, the reported use of sulfur- and carbon-radiolabeled cystine in uptake assays shows several drawbacks related to its short radioactive half-life and its relatively high cost. We here report on the elaborate validation of a method using tritiated glutamate as a substrate for the reversed transport mediated by system xc–. The uptake assay was validated in primary cultured astrocytes, in transfected cells as well as in crude synaptosomes obtained from fresh nervous tissue samples. Working in buffers containing defined concentrations of Na+, allowed us to differentiate the glutamate uptake supported by system xc– or by high-affinity glutamate transporters, as confirmed by using selective pharmacological inhibitors. The specificity was further demonstrated in primary astrocyte cultures from transgenic mice lacking xCT or in cell lines where xCT expression was genetically induced or reduced. As such, this assay appears to be a robust and cost-efficient solution to investigate the activity of this exchanger in physiological and pathological conditions. It also provides a reliable tool for the screening and characterization of new system xc– inhibitors which have been frequently cited as valuable drugs for nervous disorders and cancer.



Biomedicine ◽  
2021 ◽  
Vol 41 (4) ◽  
pp. 756-762
Author(s):  
Akshata Pai ◽  
Chandrakala Shenoy K.

Introduction and Aim: Herbal medicine have been used to treat several ailments since decades. Pouteria campechiana (Kunth) Baehni belongs to the family Sapotaceae which is widely found around the world. In folk medicine, various parts of P. campechiana is used to treat various illness. Inhibition of alpha-amylase and alpha-glucosidase enzymes can be an important strategy in management of postprandial blood glucose level in non-insulin dependent diabetic patient. Hence, present study focused to evaluate the in vitro antidiabetic activity of leaf and fruit methanolic extract of Pouteria campechiana (Kunth) Baehni.      Materials and Methods: Methanolic extract of P. campechiana leaf (PCL) and fruit (PCF) was screened by biochemical assay such as ?-amylase inhibition activity by CNPG3 method (2-chloro-p-nitrophenyl-?-D-maltotrioside) and ?- glucosidase inhibition activity and in vitro cellular assay such as glucose uptake assay in 3T3-L1 cell line.   Results: Methanolic extract of P. campechiana leaf and fruit showed inhibition of ??Amylase and ??Glucosidase enzymes. The methanolic extract of P. campechiana leaf and fruit at varying concentrations (?g/ml), did not exhibit cytotoxicity against 3T3-L1 cell line after 24 hours of incubation. The test compounds PCL and PCF induced the uptake of 2?(N?(7?Nitrobenz?2?oxa?1,3?diazol?4?yl) Amino) ? 2?Deoxyglucose (2-NBDG) in 3T3L1 cells. PCF and PCL both showed almost similar activity of standard drug, Metformin at higher concentrations.    Conclusion: Based on the results, it can be concluded that methanolic leaf and fruit extract of P. campechiana possess antidiabetic activity.



Author(s):  
MEENU VIJAYAN ◽  
MANJU PT ◽  
LEYANA PN

Objective: The study contemplates in silico modeling, synthesis and in-vitro anti-diabetic evaluation of benzothiazole substituted oxadiazole derivatives. [{5-[(1, 3-benzothiazol-2-ylsulfanyl) methyl]-1, 3, 4-oxadiazol-2-yl} sulfanyl) methyl] derivatives were synthesized by a conventional method. Methods: All the newly synthesized derivatives were characterized by determining their melting point, retention factor from thin-layer chromatography, and spectral methods (Infrared, 1H NMR spectroscopy, 13C NMR spectroscopy, Mass spectroscopy) and evaluated for their anti-diabetic activity. Results: [{5-[(1, 3-benzothiazol-2-ylsulfanyl) methyl]-1, 3, 4-oxadiazol-2-yl} sulfanyl) methyl] derivatives have been made and characterized using physical and spectral methods. The in-vitro anti-diabetic screening study revealed that BZT1 and BZT4 exhibited high inhibition against glucose uptake assay and alpha-amylase enzyme. But only the derivative BZT4 showed inhibition against alpha-glucosidase enzyme. Conclusion: Various benzothiazole substituted oxadiazole derivatives were synthesized, characterized by spectral studies. The anti-diabetic studies revealed that the synthesized derivatives have significant anti-diabetic properties and further structure-activity relationship studies may develop more potent and less toxic molecules.



2021 ◽  
Author(s):  
Spyridon Bousis ◽  
Steffen Winkler ◽  
Jörg Haupenthal ◽  
Francesco Fulco ◽  
Eleonora Diamanti ◽  
...  

Herein, we report a novel whole-cell screening assay using Lactobacillus casei as model microorganism to identify inhibitors of energy-coupling factor (ECF) transporters. This promising and underexplored target may have important pharmacological potential through modulation of vitamin homeostasis in bacteria and, importantly, it is absent in humans. The assay represents an alternative, cost-effective and fast solution to demonstrate the direct involvement of these membrane transporters in a native biological environment rather than using a low-throughput in vitro assay employing reconstituted proteins in a membrane bilayer system. Based on this new whole-cell screening approach, we demonstrated the optimization of a weak hit compound (2) into a small molecule (3) with improved in vitro and whole-cell activities. This study opens the possibility to quickly identify novel inhibitors of ECF transporters and optimize them based on structure–activity relationships.





Author(s):  
Thiruchelvi. R ◽  
Priyadharshini. S ◽  
Rajakumari K.

Moringa oleifera commonly called as Drumstick tree is a multipurpose tree and it is widely present in the places like India, Asia, Africa, etc. Its leaves are emetic and their juices are used for medicinal purposes. Diabetes mellitus is a clinical syndrome with insufficient insulin secretion and abnormal glucose tolerance. It is a group of diseases which results in too much sugar in the blood. Leaves from Moringa oleifera were collected, analysed for their anti- diabetic activity. First the proteins are extracted using protein extraction methods, estimated using Lowry’s method, and then anti- diabetic activity was checked using Glucose uptake assay by yeast cells, where the plant extract (small proteins) was able to uptake glucose. SDS-PAGE was carried out to check the protein’s size and molecular weight. The characterization of Moringa oleifera conducted in this study shows that the small peptides from the leaves of this plant can contribute significantly in the daily recommended intake of it, since it serves as a rich source of all minerals, vitamins etc. This study has confirmed that the small peptides from the leaves of M.oleifera can fight against diabetics and the result indicated that Murungai (Moringa) leaves are suitable source of green leaf to reduce the diabetic complications in diabetic patients.



Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 807
Author(s):  
Franziska Ramm ◽  
Marlitt Stech ◽  
Anne Zemella ◽  
Hendrik Frentzel ◽  
Stefan Kubick

The tripartite enterotoxin Hemolysin BL (Hbl) has been widely characterized as a hemolytic and cytotoxic virulence factor involved in foodborne diarrheal illness caused by Bacillus cereus. Previous studies have described the formation of the Hbl complex and aimed to identify the toxin’s mode of action. In this study, we analyzed the assembly of Hbl out of its three individual subunits L1, L2 and B in a soluble as well as a putative membrane bound composition using a Chinese hamster ovary (CHO) cell-free system. Subunits were either coexpressed or synthesized individually in separate cell-free reactions and mixed together afterwards. Hemolytic activity of cell-free synthesized subunits was demonstrated on 5% sheep blood agar and identified both synthesis procedures, coexpression as well as individual synthesis of each subunit, as functional for the synthesis of an active Hbl complex. Hbl’s ability to perforate cell membranes was evaluated using a propidium iodide uptake assay. These data suggested that coexpressed Hbl subunits augmented cytotoxic activity with increasing concentrations. Further, a pre-pore-complex of L1-L2 showed cytotoxic effects suggesting the possibility of an interaction between the cell membrane and the pre-pore-complex. Overall, this study shows that cell-free protein synthesis is a fast and efficient way to study the assembly of multiple protein subunits in soluble as well as vesicular fractions.



2021 ◽  
Author(s):  
Yi-Chia Chung ◽  
Hao-Yu Cheng ◽  
Wei-Tung Wang ◽  
Yen-Jui Chang ◽  
Shih-Ming Lin

Abstract Glucosinolates (GLSs) are a group of secondary metabolites that are involved in the defense of herbivores. In Arabidopsis thaliana, Glucosinolate Transporter 1 (AtGTR1) transports GLSs with high affinity via a proton gradient-driven process. In addition to transporting GLSs, AtGTR1 also transports phytohormones, jasmonic acidisoleucine (JA-Ile), and gibberellin (GA). However, little is known about the mechanisms underlying the broad substrate specificity of AtGTR1. Here, we characterized the substrate preference of AtGTR1 by using a yeast uptake assay, and the results revealed that GLS transport rates are negatively correlated with the hydrophobicity of substrates. Interestingly, the AtGTR1 showed a higher substrate affinity for GLSs with higher hydrophobicity, suggesting a hydrophobic substrate binding pocket. In addition, a competition assay revealed that the presence of JA, salicylic acid (SA), and indole-3-acetic acid (IAA) inhibits the transport of GLSs in yeast, suggesting a potential regulatory mechanism of AtGTR1. To further characterize the functional properties of AtGTR1, mutagenesis experiments confirmed that the conserved EXXEK motif and Arg166 are essential for the GLS transport function. In addition, the purified AtGTR1 adopts a homodimeric conformation, which is possibly regulated by phosphorylation on Thr105. The phosphomimetic mutation, T105D, reduced its protein expression and completely abrogated its GLS transport function, indicating the essential role of phosphorylation on AtGTR1. In summary, this study investigated various factors associated with the GLS transport and increased our knowledge on the substrate preferences of AtGTR1. These findings contribute to understanding how the distribution of defense GLSs is regulated in plants and could be used to improve crop quality in agriculture.



2021 ◽  
Vol 12 ◽  
Author(s):  
Darren Shu Jeng Ting ◽  
Jianguo Li ◽  
Chandra S. Verma ◽  
Eunice T. L. Goh ◽  
Mario Nubile ◽  
...  

Background/Aim: Host defense peptides (HDPs) have the potential to provide a novel solution to antimicrobial resistance (AMR) in view of their unique and broad-spectrum antimicrobial activities. We had recently developed a novel hybrid HDP based on LL-37 and human beta-defensin-2, named CaD23, which was shown to exhibit good in vivo antimicrobial efficacy against Staphylococcus aureus in a bacterial keratitis murine model. This study aimed to examine the potential CaD23-antibiotic synergism and the secondary structure and underlying mechanism of action of CaD23.Methods: Peptide-antibiotic interaction was evaluated against S. aureus, methicillin-resistant S. aureus (MRSA), and Pseudomonas aeruginosa using established checkerboard and time-kill assays. Fractional inhibitory concentration index (FICI) was calculated and interpreted as synergistic (FIC<0.5), additive (FIC between 0.5–1.0), indifferent (FIC between >1.0 and ≤4), or antagonistic (FIC>4). SYTOX green uptake assay was performed to determine the membrane-permeabilising action of CaD23. Molecular dynamics (MD) simulations were performed to evaluate the interaction of CaD23 with bacterial and mammalian mimetic membranes. Circular dichroism (CD) spectroscopy was also performed to examine the secondary structures of CaD23.Results: CaD23-amikacin and CaD23-levofloxacin combination treatment exhibited a strong additive effect against S. aureus SH1000 (FICI = 0.60–0.69) and MRSA43300 (FICI = 0.56–0.60) but an indifferent effect against P. aeruginosa (FIC = 1.03–1.15). CaD23 (at 25 μg/ml; 2xMIC) completely killed S. aureus within 30 min. When used at sub-MIC concentration (3.1 μg/ml; 0.25xMIC), it was able to expedite the antimicrobial action of amikacin against S. aureus by 50%. The rapid antimicrobial action of CaD23 was attributed to the underlying membrane-permeabilising mechanism of action, evidenced by the SYTOX green uptake assay and MD simulations studies. MD simulations revealed that cationicity, alpha-helicity, amphiphilicity and hydrophobicity (related to the Trp residue at C-terminal) play important roles in the antimicrobial action of CaD23. The secondary structures of CaD23 observed in MD simulations were validated by CD spectroscopy.Conclusion: CaD23 is a novel alpha-helical, membrane-active synthetic HDP that can enhance and expedite the antimicrobial action of antibiotics against Gram-positive bacteria when used in combination. MD simulations serves as a powerful tool in revealing the peptide secondary structure, dissecting the mechanism of action, and guiding the design and optimisation of HDPs.



Sign in / Sign up

Export Citation Format

Share Document