Interaction Between the Transcription Factors Core Binding Factor α1(Cbfa1) and the Activator Protein -1 (AP-1) Subunits c-Jun and c-Fos

2000 ◽  
Vol 28 (5) ◽  
pp. A455-A455
Author(s):  
R. C. D'alonzo ◽  
N. Selvamurugan ◽  
N. C. Partridge
1997 ◽  
Vol 186 (2) ◽  
pp. 247-258 ◽  
Author(s):  
Michael Naumann ◽  
Silja Weßler ◽  
Cornelia Bartsch ◽  
Björn Wieland ◽  
Thomas F. Meyer

We have studied the effect of human bacterial pathogen Neisseria gonorrhoeae (Ngo) on the activation of nuclear factor (NF)-κB and the transcriptional activation of inflammatory cytokine genes upon infection of epithelial cells. During the course of infection, Ngo, the etiologic agent of gonorrhea, adheres to and penetrates mucosal epithelial cells. In vivo, localized gonococcal infections are often associated with a massive inflammatory response. We observed upregulation of several inflammatory cytokine messenger RNAs (mRNAs) and the release of the proteins in Ngo-infected epithelial cells. Moreover, infection with Ngo induced the formation of a NF-κB DNA–protein complex and, with a delay in time, the activation of activator protein 1, whereas basic leucine zipper transcription factors binding to the cAMP-responsive element or CAAT/enhancer-binding protein DNA-binding sites were not activated. In supershift assays using NF-κB–specific antibodies, we identified a NF-κB p50/p65 heterodimer. The NF-κB complex was formed within 10 min after infection and decreased 90 min after infection. Synthesis of tumor necrosis factor α and interluekin (IL)-1β occurred at later times and therefore did not account for NF-κB activation. An analysis of transiently transfected IL-6 promoter deletion constructs suggests that NF-κB plays a crucial role for the transcriptional activation of the IL-6 promoter upon Ngo infection. Inactivation of NF-κB conferred by the protease inhibitor N-tosyl-l-phenylalanine chloromethyl ketone inhibited mRNA upregulation of most, but not all, studied cyctokine genes. Activation of NF-κB and cytokine mRNA upregulation also occur in Ngo-infected epithelial cells that were treated with cytochalasin D, indicating an extracellular signaling induced before invasion.


2003 ◽  
Vol 374 (2) ◽  
pp. 423-431 ◽  
Author(s):  
Christopher D. DEPPMANN ◽  
Tina M. THORNTON ◽  
Fransiscus E. UTAMA ◽  
Elizabeth J. TAPAROWSKY

BATF is a member of the AP-1 (activator protein-1) family of bZIP (basic leucine zipper) transcription factors that form transcriptionally inhibitory, DNA binding heterodimers with Jun proteins. In the present study, we demonstrate that BATF is phosphorylated in vivo on multiple serine and threonine residues and at least one tyrosine residue. Reverse-polarity PAGE revealed that serine-43 and threonine-48 within the DNA binding domain of BATF are phosphorylated. To model phosphorylation of the BATF DNA binding domain, serine-43 was replaced by an aspartate residue. BATF(S43D) retains the ability to dimerize with Jun proteins in vitro and in vivo, and the BATF(S43D):Jun heterodimer localizes properly to the nucleus of cells. Interestingly, BATF(S43D) functions like wild-type BATF to reduce AP-1-mediated gene transcription, despite the observed inability of the BATF(S43D):Jun heterodimer to bind DNA. These data demonstrate that phosphorylation of serine-43 converts BATF from a DNA binding into a non-DNA binding inhibitor of AP-1 activity. Given that 40% of mammalian bZIP transcription factors contain a residue analogous to serine-43 of BATF in their DNA binding domains, the phosphorylation event described here represents a mechanism that is potentially applicable to the regulation of many bZIP proteins.


Sign in / Sign up

Export Citation Format

Share Document