Hyper-IgM syndromes: a model for studying the regulation of class switch recombination and somatic hypermutation generation

2002 ◽  
Vol 30 (4) ◽  
pp. 815-818 ◽  
Author(s):  
A. Durandy

Several genetic defects in class switch recombination, which lead to a hyper-IgM syndrome, have been described recently in humans. In addition to the well known role of CD40-ligand-CD40 interaction, these pathologies demonstrate definitively the requirement of CD40-mediated nuclear factor kB activation and the essential role of a recently described molecule, the activationinduced cytidine deaminase in an efficient humoral response, which includes class switch recombination and the production of high-affinity antibodies.

2007 ◽  
Vol 204 (5) ◽  
pp. 1207-1216 ◽  
Author(s):  
Sophie Péron ◽  
Qiang Pan-Hammarström ◽  
Kohsuke Imai ◽  
Likun Du ◽  
Nadine Taubenheim ◽  
...  

Immunoglobulin class switch recombination (CSR) deficiencies are rare primary immunodeficiencies, characterized by a lack of switched isotype (IgG, IgA, or IgE) production, variably associated with abnormal somatic hypermutation (SHM). Deficiencies in CD40 ligand, CD40, activation-induced cytidine deaminase, and uracil-N-glycosylase may account for this syndrome. We previously described another Ig CSR deficiency condition, characterized by a defect in CSR downstream of the generation of double-stranded DNA breaks in switch (S) μ regions. Further analysis performed with the cells of five affected patients showed that the Ig CSR deficiency was associated with an abnormal formation of the S junctions characterized by microhomology and with increased cell radiosensitivity. In addition, SHM was skewed toward transitions at G/C residues. Overall, these findings suggest that a unique Ig CSR deficiency phenotype could be related to an as-yet-uncharacterized defect in a DNA repair pathway involved in both CSR and SHM events.


2006 ◽  
Vol 203 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Qiang Pan-Hammarström ◽  
Aleksi Lähdesmäki ◽  
Yaofeng Zhao ◽  
Likun Du ◽  
Zhihui Zhao ◽  
...  

Class switch recombination (CSR) and somatic hypermutation (SHM) are mechanistically related processes initiated by activation-induced cytidine deaminase. Here, we have studied the role of ataxia telangiectasia and Rad3-related protein (ATR) in CSR by analyzing the recombinational junctions, resulting from in vivo switching, in cells from patients with mutations in the ATR gene. The proportion of cells that have switched to immunoglobulin (Ig)A and IgG in the peripheral blood seems to be normal in ATR-deficient (ATRD) patients and the recombined S regions show a normal “blunt end-joining,” but impaired end joining with partially complementary (1–3 bp) DNA ends. There was also an increased usage of microhomology at the μ-α switch junctions, but only up to 9 bp, suggesting that the end-joining pathway requiring longer microhomologies (≥10 bp) may be ATR dependent. The SHM pattern in the Ig variable heavy chain genes is altered, with fewer mutations occurring at A and more mutations at T residues and thus a loss of strand bias in targeting A/T pairs within certain hotspots. These data suggest that the role of ATR is partially overlapping with that of ataxia telangiectasia–mutated protein, but that the former is also endowed with unique functional properties in the repair processes during CSR and SHM.


2003 ◽  
Vol 198 (8) ◽  
pp. 1171-1178 ◽  
Author(s):  
Alberto Martin ◽  
Ziqiang Li ◽  
Diana P. Lin ◽  
Philip D. Bardwell ◽  
Maria D. Iglesias-Ussel ◽  
...  

Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytidine deaminase–mediated cytidine deamination of immunoglobulin genes. MutS homologue (Msh) 2−/− mice have reduced A-T mutations and CSR. This suggests that Msh2 may play a role in repairing activation-induced cytidine deaminase–generated G-U mismatches. However, because Msh2 not only initiates mismatch repair but also has other functions, such as signaling for apoptosis, it is not known which activity of Msh2 is responsible for the effects observed, and consequently, many models have been proposed. To further dissect the role of Msh2 in SHM and CSR, mice with a “knockin” mutation in the Msh2 gene that inactivates the adenosine triphosphatase domain were examined. This mutation (i.e., Msh2G674A), which does not affect apoptosis signaling, allows mismatches to be recognized but prevents Msh2 from initiating mismatch repair. Here, we show that, similar to Msh2−/− mice, SHM in Msh2G674A mice is biased toward G-C mutations. However, CSR is partially reduced, and switch junctions are more similar to those of postmeiotic segregation 2−/− mice than to Msh2−/− mice. These results indicate that Msh2 adenosine triphosphatase activity is required for A-T mutations, and suggest that Msh2 has more than one role in CSR.


2004 ◽  
Vol 199 (2) ◽  
pp. 265-270 ◽  
Author(s):  
Ahmad Faili ◽  
Said Aoufouchi ◽  
Sandra Weller ◽  
Françoise Vuillier ◽  
Anne Stary ◽  
...  

Base substitutions, deletions, and duplications are observed at the immunoglobulin locus in DNA sequences involved in class switch recombination (CSR). These mutations are dependent upon activation-induced cytidine deaminase (AID) and present all the characteristics of the ones observed during V gene somatic hypermutation, implying that they could be generated by the same mutational complex. It has been proposed, based on the V gene mutation pattern of patients with the cancer-prone xeroderma pigmentosum variant (XP-V) syndrome who are deficient in DNA polymerase η (pol η), that this enzyme could be responsible for a large part of the mutations occurring on A/T bases. Here we show, by analyzing switched memory B cells from two XP-V patients, that pol η is also an A/T mutator during CSR, in both the switch region of tandem repeats as well as upstream of it, thus suggesting that the same error-prone translesional polymerases are involved, together with AID, in both processes.


2008 ◽  
Vol 205 (11) ◽  
pp. 2585-2594 ◽  
Author(s):  
Kevin M. McBride ◽  
Anna Gazumyan ◽  
Eileen M. Woo ◽  
Tanja A. Schwickert ◽  
Brian T. Chait ◽  
...  

Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates somatic mutation and class switch recombination in B lymphocytes by introducing uracil:guanine mismatches into DNA. Repair pathways process these mismatches to produce point mutations in the Ig variable region or double-stranded DNA breaks in the switch region DNA. However, AID can also produce off-target DNA damage, including mutations in oncogenes. Therefore, stringent regulation of AID is required for maintaining genomic stability during maturation of the antibody response. It has been proposed that AID phosphorylation at serine 38 (S38) regulates its activity, but this has not been tested in vivo. Using a combination of mass spectrometry and immunochemical approaches, we found that in addition to S38, AID is also phosphorylated at position threonine 140 (T140). Mutation of either S38 or T140 to alanine does not impact catalytic activity, but interferes with class switching and somatic hypermutation in vivo. This effect is particularly pronounced in haploinsufficient mice where AID levels are limited. Although S38 is equally important for both processes, T140 phosphorylation preferentially affects somatic mutation, suggesting that posttranslational modification might contribute to the choice between hypermutation and class switching.


2005 ◽  
Vol 202 (6) ◽  
pp. 733-738 ◽  
Author(s):  
Vasco M. Barreto ◽  
Qiang Pan-Hammarstrom ◽  
Yaofeng Zhao ◽  
Lennart Hammarstrom ◽  
Ziva Misulovin ◽  
...  

Class switch recombination was the last of the lymphocyte-specific DNA modification reactions to appear in the evolution of the adaptive immune system. It is absent in cartilaginous and bony fish, and it is common to all tetrapods. Class switching is initiated by activation-induced cytidine deaminase (AID), an enzyme expressed in cartilaginous and bony fish that is also required for somatic hypermutation. Fish AID differs from orthologs found in tetrapods in several respects, including its catalytic domain and carboxy-terminal region, both of which are essential for the switching reaction. To determine whether evolution of class switch recombination required alterations in AID, we assayed AID from Japanese puffer and zebra fish for class-switching activity in mouse B cells. We find that fish AID catalyzes class switch recombination in mammalian B cells. Thus, AID had the potential to catalyze this reaction before the teleost and tetrapod lineages diverged, suggesting that the later appearance of a class-switching reaction was dependent on the evolution of switch regions and multiple constant regions in the IgH locus.


Blood ◽  
2009 ◽  
Vol 113 (16) ◽  
pp. 3706-3715 ◽  
Author(s):  
Nancy S. Longo ◽  
Patricia L. Lugar ◽  
Sule Yavuz ◽  
Wen Zhang ◽  
Peter H. L. Krijger ◽  
...  

Abstract Subjects with X-linked hyper-IgM syndrome (X-HIgM) have a markedly reduced frequency of CD27+ memory B cells, and their Ig genes have a low level of somatic hypermutation (SHM). To analyze the nature of SHM in X-HIgM, we sequenced 209 nonproductive and 926 productive Ig heavy chain genes. In nonproductive rearrangements that were not subjected to selection, as well as productive rearrangements, most of the mutations were within targeted RGYW, WRCY, WA, or TW motifs (R = purine, Y = pyrimidine, and W = A or T). However, there was significantly decreased targeting of the hypermutable G in RGYW motifs. Moreover, the ratio of transitions to transversions was markedly increased compared with normal. Microarray analysis documented that specific genes involved in SHM, including activation-induced cytidine deaminase (AICDA) and uracil-DNA glycosylase (UNG2), were up-regulated in normal germinal center (GC) B cells, but not induced by CD40 ligation. Similar results were obtained from light chain rearrangements. These results indicate that in the absence of CD40-CD154 interactions, there is a marked reduction in SHM and, specifically, mutations of AICDA-targeted G residues in RGYW motifs along with a decrease in transversions normally related to UNG2 activity.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1448-1455 ◽  
Author(s):  
Julia Rastelli ◽  
Cornelia Hömig-Hölzel ◽  
Jane Seagal ◽  
Werner Müller ◽  
Andrea C. Hermann ◽  
...  

AbstractThe Epstein-Barr virus (EBV) protein LMP1 is considered to be a functional homologue of the CD40 receptor. However, in contrast to the latter, LMP1 is a constitutively active signaling molecule. To compare B cell–specific LMP1 and CD40 signaling in an unambiguous manner, we generated transgenic mice conditionally expressing a CD40/LMP1 fusion protein, which retained the LMP1 cytoplasmic tail but has lost the constitutive activity of LMP1 and needs to be activated by the CD40 ligand. We show that LMP1 signaling can completely substitute CD40 signaling in B cells, leading to normal B-cell development, activation, and immune responses including class-switch recombination, germinal center formation, and somatic hypermutation. In addition, the LMP1-signaling domain has a unique property in that it can induce class-switch recombination to IgG1 independent of cytokines. Thus, our data indicate that LMP1 has evolved to imitate T-helper cell function allowing activation, proliferation, and differentiation of EBV-infected B cells independent of T cells.


2008 ◽  
Vol 364 (1517) ◽  
pp. 667-673 ◽  
Author(s):  
Uttiya Basu ◽  
Andrew Franklin ◽  
Frederick W Alt

The assembled immunoglobulin genes in the B cells of mice and humans are altered by distinct processes known as class switch recombination (CSR) and somatic hypermutation, leading to diversification of the antibody repertoire. These two DNA modification processes are initiated by the B cell-specific protein factor activation-induced cytidine deaminase (AID). AID is post-translationally modified by phosphorylation at multiple sites, although functional significance during CSR has been implicated only for phosphorylation at serine-38 (S38). Although multiple laboratories have demonstrated that AID function is regulated via phosphorylation at S38, the precise biological role of S38 phosphorylation has been a topic of debate. Here, we discuss our interpretation of the significance of AID regulation via phosphorylation and also discuss how this form of AID regulation may have evolved in higher organisms.


Sign in / Sign up

Export Citation Format

Share Document