Evolution of the soluble nitrate reductase: defining the monomeric periplasmic nitrate reductase subgroup

2006 ◽  
Vol 34 (1) ◽  
pp. 122-126 ◽  
Author(s):  
B.J.N. Jepson ◽  
A. Marietou ◽  
S. Mohan ◽  
J.A. Cole ◽  
C.S. Butler ◽  
...  

Bacterial nitrate reductases can be classified into at least three groups according to their localization and function, namely membrane-bound (NAR) or periplasmic (NAP) respiratory and cytoplasmic assimilatory (NAS) enzymes. Monomeric NASs are the simplest of the soluble nitrate reductases, although heterodimeric NASs exist, and a common structural arrangement of NAP is that of a NapAB heterodimer. Using bioinformatic analysis of published genomes, we have identified more representatives of a monomeric class of NAP, which is the evolutionary link between the monomeric NASs and the heterodimeric NAPs. This has further established the monomeric structural clade of NAP. The operons of the monomeric NAP do not contain NapB and suggest that other redox partners are employed by these enzymes, including NapM or NapG predicted proteins. A structural alignment and comparison of the monomeric and heterodimeric NAPs suggests that a difference in surface polarity is related to the interaction of the respective catalytic subunit and redox partner.

2001 ◽  
Vol 58 (2) ◽  
pp. 179-193 ◽  
Author(s):  
F. Blasco* ◽  
B. Guigliarelli ◽  
A. Magalon ◽  
M. Asso ◽  
G. Giordano ◽  
...  

1995 ◽  
Vol 309 (3) ◽  
pp. 983-992 ◽  
Author(s):  
B C Berks ◽  
D J Richardson ◽  
A Reilly ◽  
A C Willis ◽  
S J Ferguson

The napEDABC locus coding for the periplasmic nitrate reductase of Thiosphaera pantotropha has been cloned and sequenced. The large and small subunits of the enzyme are coded by napA and napB. The sequence of NapA indicates that this protein binds the GMP-conjugated form of the molybdopterin cofactor. Cysteine-181 is proposed to ligate the molybdenum atom. It is inferred that the active site of the periplasmic nitrate reductase is structurally related to those of the molybdenum-dependent formate dehydrogenases and bacterial assimilatory nitrate reductases, but is distinct from that of the membrane-bound respiratory nitrate reductases. A four-cysteine motif at the N-terminus of NapA binds a [4Fe-4S] cluster. The DNA- and protein-derived primary sequence of NapB confirm that this protein is a dihaem c-type cytochrome and, together with spectroscopic data, indicate that both NapB haems have bis-histidine ligation. napC is predicted to code for a membrane-anchored tetrahaem c-type cytochrome that shows sequence similarity to the NirT cytochrome c family. NapC may be the direct electron donor to the NapAB complex. napD is predicted to encode a soluble cytoplasmic protein and napE a monotopic integral membrane protein, napDABC genes can be discerned at the aeg-46.5 locus of Escherichia coli K-12, suggesting that this operon encodes a periplasmic nitrate reductase system, while napD and napC are identified adjacent to the napAB genes of Alcaligenes eutrophus H16.


2001 ◽  
Vol 67 (11) ◽  
pp. 5122-5126 ◽  
Author(s):  
Monique Sabaty ◽  
Cécile Avazeri ◽  
David Pignol ◽  
André Vermeglio

ABSTRACT Preliminary studies showed that the periplasmic nitrate reductase (Nap) of Rhodobacter sphaeroides and the membrane-bound nitrate reductases of Escherichia coli are able to reduce selenate and tellurite in vitro with benzyl viologen as an electron donor. In the present study, we found that this is a general feature of denitrifiers. Both the periplasmic and membrane-bound nitrate reductases of Ralstonia eutropha, Paracoccus denitrificans, and Paracoccus pantotrophus can utilize potassium selenate and potassium tellurite as electron acceptors. In order to characterize these reactions, the periplasmic nitrate reductase of R. sphaeroides f. sp. denitrificans IL106 was histidine tagged and purified. The V max andKm were determined for nitrate, tellurite, and selenate. For nitrate, values of 39 μmol · min−1 · mg−1 and 0.12 mM were obtained for V max and Km , respectively, whereas the V max values for tellurite and selenate were 40- and 140-fold lower, respectively. These low activities can explain the observation that depletion of the nitrate reductase in R. sphaeroides does not modify the MIC of tellurite for this organism.


2005 ◽  
Vol 72 ◽  
pp. 119-127 ◽  
Author(s):  
Tamara Golub ◽  
Caroni Pico

The interactions of cells with their environment involve regulated actin-based motility at defined positions along the cell surface. Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes, and have been implicated in most signalling processes at the cell surface. Many membrane-bound components that regulate actin cytoskeleton dynamics and cell-surface motility associate with PtdIns(4,5)P2-rich lipid rafts. Although raft integrity is not required for substrate-directed cell spreading, or to initiate signalling for motility, it is a prerequisite for sustained and organized motility. Plasmalemmal rafts redistribute rapidly in response to signals, triggering motility. This process involves the removal of rafts from sites that are not interacting with the substrate, apparently through endocytosis, and a local accumulation at sites of integrin-mediated substrate interactions. PtdIns(4,5)P2-rich lipid rafts can assemble into patches in a process depending on PtdIns(4,5)P2, Cdc42 (cell-division control 42), N-WASP (neural Wiskott-Aldrich syndrome protein) and actin cytoskeleton dynamics. The raft patches are sites of signal-induced actin assembly, and their accumulation locally promotes sustained motility. The patches capture microtubules, which promote patch clustering through PKA (protein kinase A), to steer motility. Raft accumulation at the cell surface, and its coupling to motility are influenced greatly by the expression of intrinsic raft-associated components that associate with the cytosolic leaflet of lipid rafts. Among them, GAP43 (growth-associated protein 43)-like proteins interact with PtdIns(4,5)P2 in a Ca2+/calmodulin and PKC (protein kinase C)-regulated manner, and function as intrinsic determinants of motility and anatomical plasticity. Plasmalemmal PtdIns(4,5)P2-rich raft assemblies thus provide powerful organizational principles for tight spatial and temporal control of signalling in motility.


2021 ◽  
Vol 22 (5) ◽  
pp. 2647
Author(s):  
M. Quadir Siddiqui ◽  
Maulik D. Badmalia ◽  
Trushar R. Patel

Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and functions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share similarities with transcriptional regulators and have positively charged electrostatic patches, which may indicate that they have previously unanticipated nucleic acid binding properties. Intrinsic dynamics analysis of Lim domains suggest that only Lim1 has similar internal dynamics properties, unlike Lim2/3. Furthermore, we analyzed protein expression and mutational frequency in various malignancies, as well as mapped protein-protein interaction networks they are involved in. Overall, our comprehensive bioinformatic analysis suggests that these proteins may play important roles in mediating protein-protein and protein-nucleic acid interactions.


1995 ◽  
Vol 41 (2) ◽  
pp. 136-144 ◽  
Author(s):  
J. A. Mackintosh ◽  
J. E. Trimble ◽  
A. J. Beattie ◽  
D. A. Veal ◽  
M. K. Jones ◽  
...  

Secretions from exocrine metapleural glands of Myrmecia gulosa (Australian bull ant) exhibit broad-spectrum antimicrobial activity. Treatment of the yeast Candida albicans with metapleural secretion resulted in the rapid and total leakage of K+ions from cells within 10 min. Ultrastructural analysis of the bacteria Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa, and cells and protoplasts of Candida albicans demonstrated gross damage of the cell membrane and aggregation of the cytoplasmic matrix of treated cells. Degradation of membrane-bound organelles was also observed in Candida albicans. The antimicrobially active components of metapleural secretions were nonpolar and interacted with the phospholipid bilayer, causing damage to the structural integrity of liposomes and the release of carboxyfluorescein. The data suggest that the antimicrobial agents in metapleural secretion act primarily by disrupting the structure and function of the phospholipid bilayer of the cytoplasmic membrane.Key words: ant metapleural secretion, antimicrobial, Candida albicans, cytoplasmic membrane.


1977 ◽  
Vol 168 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J C Ramsey ◽  
W J Steele

Free loosely bound and tightly bound polyribosomes were separated from rat liver homogenate by salt extraction followed by differential centrifugation, and several of their structural and functional properties were compared to resolve the existence of loosely bound polyribosomes and verify the specificity of the separation. The free and loosely bound polyribosomes have similar sedimentation profiles and polyribosome contents, their subunit proteins have similar electrophoretic patterns and their products of protein synthesis in vitro show a close correspondence in size and amounts synthesized. In contrast, the tightly bound polyribosomes have different properties from those of the free and loosely bound polyribosomes; their average size is significantly smaller; their polyribosome content is higher; their 60 S-subunit proteins lack two components and contain four or more components not found elsewhere; their products of protein synthesis in vitro differ in size and amounts synthesized. These observations show that rat liver membranes entrap a large fraction of the free polyribosomes at low salt concentrations and that these polyribosomes are similar to those of the free-polyribosome fraction and are different from those of the tightly bound polyribosome fraction in size, structure and function.


Sign in / Sign up

Export Citation Format

Share Document