Photoactivated structural dynamics of fluorescent proteins

2012 ◽  
Vol 40 (3) ◽  
pp. 531-538 ◽  
Author(s):  
Dominique Bourgeois ◽  
Aline Regis-Faro ◽  
Virgile Adam

Proteins of the GFP (green fluorescent protein) family have revolutionized life sciences because they allow the tagging of biological samples in a non-invasive genetically encoded way. ‘Phototransformable’ fluorescent proteins, in particular, have recently attracted widespread interest, as their fluorescence state can be finely tuned by actinic light, a property central to the development of super-resolution microscopy. Beyond microscopy applications, phototransformable fluorescent proteins are also exquisite tools to investigate fundamental protein dynamics. Using light to trigger processes such as photoactivation, photoconversion, photoswitching, blinking and photobleaching allows the exploration of the conformational landscape in multiple directions. In the present paper, we review how structural dynamics of phototransformable fluorescent proteins can be monitored by combining X-ray crystallography, in crystallo optical spectroscopy and simulation tools such as quantum chemistry/molecular mechanics hybrid approaches. Besides their usefulness to rationally engineer better performing fluorescent proteins for nanoscopy and other biotechnological applications, these investigations provide fundamental insights into protein dynamics.

2019 ◽  
Author(s):  
Jeffrey Chang ◽  
Matthew Romei ◽  
Steven Boxer

<p>Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of <i>cis</i> and <i>trans</i> rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the <i>trans</i> state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas in a tighter packing (7% smaller unit cell size), the hula-twist occurs.</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p> <p> </p>


ACS Nano ◽  
2015 ◽  
Vol 9 (10) ◽  
pp. 9528-9541 ◽  
Author(s):  
Sam Duwé ◽  
Elke De Zitter ◽  
Vincent Gielen ◽  
Benjamien Moeyaert ◽  
Wim Vandenberg ◽  
...  

2019 ◽  
Author(s):  
Jeffrey Chang ◽  
Matthew Romei ◽  
Steven Boxer

<p>Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of <i>cis</i> and <i>trans</i> rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the <i>trans</i> state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas in a tighter packing (7% smaller unit cell size), the hula-twist occurs.</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p> <p> </p>


2016 ◽  
Vol 72 (12) ◽  
pp. 1298-1307 ◽  
Author(s):  
Damien Clavel ◽  
Guillaume Gotthard ◽  
David von Stetten ◽  
Daniele De Sanctis ◽  
Hélène Pasquier ◽  
...  

Until recently, genes coding for homologues of the autofluorescent protein GFP had only been identified in marine organisms from the phyla Cnidaria and Arthropoda. New fluorescent-protein genes have now been found in the phylum Chordata, coding for particularly bright oligomeric fluorescent proteins such as the tetrameric yellow fluorescent proteinlanYFP fromBranchiostoma lanceolatum. A successful monomerization attempt led to the development of the bright yellow-green fluorescent protein mNeonGreen. The structures oflanYFP and mNeonGreen have been determined and compared in order to rationalize the directed evolution process leading from a bright, tetrameric to a still bright, monomeric fluorescent protein. An unusual discolouration of crystals of mNeonGreen was observed after X-ray data collection, which was investigated using a combination of X-ray crystallography and UV–visible absorption and Raman spectroscopies, revealing the effects of specific radiation damage in the chromophore cavity. It is shown that X-rays rapidly lead to the protonation of the phenolate O atom of the chromophore and to the loss of its planarity at the methylene bridge.


PLoS Biology ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. e3000936
Author(s):  
Gerard G. Lambert ◽  
Hadrien Depernet ◽  
Guillaume Gotthard ◽  
Darrin T. Schultz ◽  
Isabelle Navizet ◽  
...  

Using mRNA sequencing and de novo transcriptome assembly, we identified, cloned, and characterized 9 previously undiscovered fluorescent protein (FP) homologs from Aequorea victoria and a related Aequorea species, with most sequences highly divergent from A. victoria green fluorescent protein (avGFP). Among these FPs are the brightest green fluorescent protein (GFP) homolog yet characterized and a reversibly photochromic FP that responds to UV and blue light. Beyond green emitters, Aequorea species express purple- and blue-pigmented chromoproteins (CPs) with absorbances ranging from green to far-red, including 2 that are photoconvertible. X-ray crystallography revealed that Aequorea CPs contain a chemically novel chromophore with an unexpected crosslink to the main polypeptide chain. Because of the unique attributes of several of these newly discovered FPs, we expect that Aequorea will, once again, give rise to an entirely new generation of useful probes for bioimaging and biosensing.


2021 ◽  
pp. mbc.E21-01-0044
Author(s):  
Mitsuo Osuga ◽  
Tamako Nishimura ◽  
Shiro Suetsugu

Super-resolution microscopy determines the localization of fluorescent proteins with high precision, beyond the diffraction limit of light. Super-resolution microscopic techniques include photoactivated localization microscopy (PALM), which can localize a single protein by the stochastic activation of its fluorescence. In the determination of single-molecule localization by PALM, the number of molecules that can be analyzed per image is limited. Thus, many images are required to reconstruct the localization of numerous molecules in the cell. However, most fluorescent proteins lose their fluorescence upon fixation. Here, we combined the amino acid substitutions of two Eos protein derivatives, Skylan-S and mEos4b, which are a green reversibly photoswitchable fluorescent protein (RSFP) and a fixation-resistant green-to-red photo-convertible fluorescent protein, respectively, resulting in the fixation-resistant Skylan-S (frSkylan-S), a green RSFP. The frSkylan-S protein is inactivated by excitation light and re-activated by irradiation with violet light, and retained more fluorescence after aldehyde fixation than Skylan-S. The qualities of the frSkylan-S fusion proteins were sufficiently high in PALM observations, as examined using α-tubulin and clathrin light chain. Furthermore, frSkylan-S can be combined with antibody staining for multicolor imaging. Therefore, frSkylan-S is a green fluorescent protein suitable for PALM imaging under aldehyde-fixation conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0241461
Author(s):  
Oana N. Antonescu ◽  
Andreas Rasmussen ◽  
Nicole A. M. Damm ◽  
Ditte F. Heidemann ◽  
Roman Popov ◽  
...  

Split fluorescent proteins have wide applicability as biosensors for protein-protein interactions, genetically encoded tags for protein detection and localization, as well as fusion partners in super-resolution microscopy. We have here established and validated a novel platform for functional analysis of leave-one-out split fluorescent proteins (LOO-FPs) in high throughput and with rapid turnover. We have screened more than 12,000 variants of the beta-strand split fragment using high-density peptide microarrays for binding and functional complementation in Green Fluorescent Protein. We studied the effect of peptide length and the effect of different linkers to the solid support. We further mapped the effect of all possible amino acid substitutions on each position as well as in the context of some single and double amino acid substitutions. As all peptides were tested in 12 duplicates, the analysis rests on a firm statistical basis allowing for confirmation of the robustness and precision of the method. Based on experiments in solution, we conclude that under the given conditions, the signal intensity on the peptide microarray faithfully reflects the binding affinity between the split fragments. With this, we are able to identify a peptide with 9-fold higher affinity than the starting peptide.


2020 ◽  
Author(s):  
Oana N. Antonescu ◽  
Andreas Rasmussen ◽  
Nicole A.M. Damm ◽  
Ditte F. Heidemann ◽  
Roman Popov ◽  
...  

ABSTRACTSplit fluorescent proteins have wide applicability as biosensors for protein-protein interactions, genetically encoded tags for protein detection and localization, as well as fusion partners in super-resolution microscopy. We have established and validated a novel platform for functional analysis of leave-one-out split fluorescent proteins (LOO-FPs) in high throughput and with rapid turnover. We have screened more than 12,000 strand 10 variants using high-density peptide microarrays for binding and functional complementation in Green Fluorescent Protein. We studied the effect of peptide length and the effect of different linkers to the solid support and mapped the effect of all possible amino acid substitutions on each position as well as in the context of some single and double amino acid substitutions. As all peptides were tested in 12 duplicates, the analysis rests on a firm statistical basis allowing determination of robustness and precision of the method. We showed that the microarray fluorescence correlated with the affinity in solution between the LOO-FP and peptides. A double substitution yielded a peptide with 9-fold higher affinity than the starting peptide.


2018 ◽  
Author(s):  
Clémence Roggo ◽  
Jan Roelof van der Meer

ABSTRACTChemotaxis is based on ligand-receptor interactions that are transmitted via protein-protein interactions to the flagellar motors. Ligand-receptor interactions in chemotaxis can be deployed for the development of rapid biosensor assays, but there is no consensus as to what the best readout of such assays would have to be. Here we explore two potential fluorescent readouts of chemotactically activeEscherichia colicells. In the first, we probed interactions between the chemotaxis signaling proteins CheY and CheZ by fusing them individually with non-fluorescent parts of a ‘split’-Green Fluorescent Protein. Wild-type chemotactic cells but not mutants lacking the CheA kinase produced distinguishable fluorescence foci, two-thirds of which localize at the cell poles with the chemoreceptors and one-third at motor complexes. Cells expressing fusion proteins only were attracted to serine sources, demonstrating measurable functional interactions between CheY~P and CheZ. Fluorescent foci based on stable split-eGFP displayed small fluctuations in cells exposed to attractant or repellent, but those based on an unstable ASV-tagged eGFP showed a higher dynamic behaviour both in the foci intensity changes and the number of foci per cell. For the second readout, we expressed the pH-sensitive fluorophore pHluorin in the cyto- and periplasm of chemotactically activeE. coli. Calibrations of pHluorin fluorescence as a function of pH demonstrated that cells accumulating near a chemo-attractant temporally increase cytoplasmic pH while decreasing periplasmic pH. Both readouts thus show promise as proxies for chemotaxis activity, but will have to be further optimized in order to deliver practical biosensor assays.IMPORTANCEBacterial chemotaxis may be deployed for future biosensing purposes with the advantages of its chemoreceptor ligand-specificity and its minute-scale response time. On the downside, chemotaxis is ephemeral and more difficult to quantitatively read out than, e.g., reporter gene expression. It is thus important to investigate different alternative ways to interrogate chemotactic response of cells. Here we gauge the possibilities to measure dynamic response in theEscherichia colichemotaxis pathway resulting from phosphorylated CheY-CheZ interactions by using (unstable) split-fluorescent proteins. We further test whether pH differences between cyto- and periplasm as a result of chemotactic activity can be measured with help of pH-sensitive fluorescent proteins. Our results show that both approaches conceptually function, but will need further improvement in terms of detection and assay types to be practical for biosensing.


Sign in / Sign up

Export Citation Format

Share Document