scholarly journals Visualizing the inner life of microbes: practices of multi-color single-molecule localization microscopy in microbiology

2019 ◽  
Vol 47 (4) ◽  
pp. 1041-1065 ◽  
Author(s):  
Ilijana Vojnovic ◽  
Jannik Winkelmeier ◽  
Ulrike Endesfelder

Abstract In this review, we discuss multi-color single-molecule imaging and tracking strategies for studying microbial cell biology. We first summarize and compare the methods in a detailed literature review of published studies conducted in bacteria and fungi. We then introduce a guideline on which factors and parameters should be evaluated when designing a new experiment, from fluorophore and labeling choices to imaging routines and data analysis. Finally, we give some insight into some of the recent and promising applications and developments of these techniques and discuss the outlook for this field.

2021 ◽  
Vol 13 ◽  
Author(s):  
Kaarjel K. Narayanasamy ◽  
Aleksandar Stojic ◽  
Yunqing Li ◽  
Steffen Sass ◽  
Marina R. Hesse ◽  
...  

The development of super-resolution microscopy (SRM) has widened our understanding of biomolecular structure and function in biological materials. Imaging multiple targets within a single area would elucidate their spatial localization relative to the cell matrix and neighboring biomolecules, revealing multi-protein macromolecular structures and their functional co-dependencies. SRM methods are, however, limited to the number of suitable fluorophores that can be imaged during a single acquisition as well as the loss of antigens during antibody washing and restaining for organic dye multiplexing. We report the visualization of multiple protein targets within the pre- and postsynapse in 350–400 nm thick neuronal tissue sections using DNA-assisted single-molecule localization microscopy (SMLM). In a single labeling step, antibodies conjugated with short DNA oligonucleotides visualized multiple targets by sequential exchange of fluorophore-labeled complementary oligonucleotides present in the imaging buffer. This approach avoids potential effects on structural integrity when using multiple rounds of immunolabeling and eliminates chromatic aberration, because all targets are imaged using a single excitation laser wavelength. This method proved robust for multi-target imaging in semi-thin tissue sections with a lateral resolution better than 25 nm, paving the way toward structural cell biology with single-molecule SRM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anindita Dasgupta ◽  
Joran Deschamps ◽  
Ulf Matti ◽  
Uwe Hübner ◽  
Jan Becker ◽  
...  

Abstract3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. In supercritical angle localization microscopy (SALM), z-positions of single fluorophores are extracted from the intensity of supercritical angle fluorescence, which strongly depends on their distance to the coverslip. Here, we realize the full potential of SALM and improve its z-resolution by more than four-fold compared to the state-of-the-art by directly splitting supercritical and undercritical emission, using an ultra-high NA objective, and applying fitting routines to extract precise intensities of single emitters. We demonstrate nanometer isotropic localization precision on DNA origami structures, and on clathrin coated vesicles and microtubules in cells, illustrating the potential of SALM for cell biology.


2020 ◽  
Author(s):  
Anindita Dasgupta ◽  
Joran Deschamps ◽  
Ulf Matti ◽  
Uwe Hübner ◽  
Jan Becker ◽  
...  

Abstract3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. Supercritical angle fluorescence strongly depends on the z-position of the fluorophore and can be used for z localization in a method called supercritical angle localization microscopy (SALM). Here, we realize the full potential of SALM by directly splitting supercritical and undercritical emission, using an ultra-high NA objective, and applying new fitting routines to extract precise intensities of single emitters, resulting in a four-fold improved z-resolution compared to the state of the art. We demonstrate nanometer isotropic localization precision on DNA origami structures, and on clathrin coated vesicles and microtubules in cells, illustrating the potential of SALM for cell biology.


2021 ◽  
Author(s):  
Kaarjel K. Narayanasamy ◽  
Aleksandar Stojic ◽  
Yunqing Li ◽  
Steffen Sass ◽  
Marina Hesse ◽  
...  

AbstractThe development of super-resolution microscopy (SRM) has widened our understanding of biomolecular structure and function in biological materials. Imaging multiple targets within a single area would elucidate their spatial localization relative to the cell matrix and neighboring biomolecules, revealing multi-protein macromolecular structures and their functional co-dependencies. SRM methods are, however, limited to the number of suitable fluorophores that can be imaged during a single acquisition as well as the loss of antigens during antibody washing and restaining for organic dye multiplexing. We report the visualization of multiple protein targets within the pre- and postsynapse in 350-400 nm thick neuronal tissue sections using DNA-assisted single-molecule localization microscopy. Using antibodies labeled with short DNA oligonucleotides, multiple targets are visualized successively by sequential exchange of fluorophore-labeled complementary oligonucleotides present in the imaging buffer. The structural integrity of the tissue is maintained owing to only a single labelling step during sample preparation. Multiple targets are imaged using a single laser wavelength, minimizing chromatic aberration. This method proved robust for multi-target imaging in semi-thin tissue sections, paving the way towards structural cell biology with single-molecule super-resolution microscopy.


2018 ◽  
Author(s):  
Tomáš Lukeš ◽  
Jakub Pospíšil ◽  
Karel Fliegel ◽  
Theo Lasser ◽  
Guy M. Hagen

BackgroundSuper-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared to organic dyes which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms.FindingsFour complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM data sets using a different method: super-resolution optical fluctuation imaging (SOFI). The two modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes.ConclusionThis dataset has potential for extensive reuse. Complete raw data from SMLM experiments has typically not been published. The YFP data exhibits low signal to noise ratios, making data analysis a challenge. These data sets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.


2019 ◽  
Author(s):  
Zacharias Thiel ◽  
Pablo Rivera-Fuentes

Many biomacromolecules are known to cluster in microdomains with specific subcellular localization. In the case of enzymes, this clustering greatly defines their biological functions. Nitroreductases are enzymes capable of reducing nitro groups to amines and play a role in detoxification and pro-drug activation. Although nitroreductase activity has been detected in mammalian cells, the subcellular localization of this activity remains incompletely characterized. Here, we report a fluorescent probe that enables super-resolved imaging of pools of nitroreductase activity within mitochondria. This probe is activated sequentially by nitroreductases and light to give a photo-crosslinked adduct of active enzymes. In combination with a general photoactivatable marker of mitochondria, we performed two-color, threedimensional, single-molecule localization microscopy. These experiments allowed us to image the sub-mitochondrial organization of microdomains of nitroreductase activity.<br>


2019 ◽  
Author(s):  
Zacharias Thiel ◽  
Pablo Rivera-Fuentes

Many biomacromolecules are known to cluster in microdomains with specific subcellular localization. In the case of enzymes, this clustering greatly defines their biological functions. Nitroreductases are enzymes capable of reducing nitro groups to amines and play a role in detoxification and pro-drug activation. Although nitroreductase activity has been detected in mammalian cells, the subcellular localization of this activity remains incompletely characterized. Here, we report a fluorescent probe that enables super-resolved imaging of pools of nitroreductase activity within mitochondria. This probe is activated sequentially by nitroreductases and light to give a photo-crosslinked adduct of active enzymes. In combination with a general photoactivatable marker of mitochondria, we performed two-color, threedimensional, single-molecule localization microscopy. These experiments allowed us to image the sub-mitochondrial organization of microdomains of nitroreductase activity.<br>


Sign in / Sign up

Export Citation Format

Share Document