The Effect of Aminophylline on the Respiration and Pulmonary Circulation

1970 ◽  
Vol 38 (5) ◽  
pp. 549-554 ◽  
Author(s):  
V. Ježek ◽  
A. Ouředník ◽  
J. Štěpánek ◽  
F. Boudík

1. We have examined the effects of aminophylline on the respiration and pulmonary circulation of eleven patients with chronic bronchitis and six patients with peripheral bronchial carcinoma; the latter were free from bronchial obstruction at the time of study. 2. Aminophylline caused an increase in total and alveolar ventilation and a decrease in arterial carbon dioxide tension. Lung diffusing capacity was unaltered in subjects with marked respiratory insufficiency but increased slightly in an additional group of less severely affected patients, and in the control subjects. 3. Mean pulmonary arterial pressure decreased significantly in the patients with chronic bronchitis but not those with lung cancer. A positive correlation was observed between the level of pulmonary arterial pressure during the control period and the decrease after aminophylline. 4. For the group as a whole there was no significant change in cardiac output or arterial oxygen saturation or tension. However, in those subjects in whom the cardiac output was increased, the arterial blood oxygen was reduced despite an increase in alveolar ventilation. The data are interpreted as evidence for a disproportionate part of the increase in cardiac output being directed to poorly ventilated areas of the lung.

Open Medicine ◽  
2008 ◽  
Vol 3 (4) ◽  
pp. 482-486
Author(s):  
Saeed Abdelwhab ◽  
Khaled. Dessoukey ◽  
Gamal Lotfy ◽  
Ashraf Alsaeed ◽  
Hesham Anwar

AbstractThe aim of the study was to determine the mean pulmonary pressure in adult with hypertrophic tonsils and adenoids and to clarify whether tonsillectomy and adenoidectomy has any effect on mean pulmonary arterial pressure of these adult. The study was carried out on 50 patients with diagnosis of upper airway obstruction resulting from hypertrophied tonsils and adenoids (group1). 25 adults were assigned as control with similar age and sex distribution (group2). For study subjects Routine general Examinations, BMI, ECG, Chest X ray, Arterial blood gases and Echocardiography were done. Mean pulmonary arterial pressure was measured by using Doppler Echocardiography preoperatively and mean 3–4 months postoperatively in all subjects. Elevated PAP (pulmonary artery pressure) was found in 15 patients (30%) in group 1 preoperatively. Mean PAP was 28.34 ±5.11 mmHg preoperative in group 1 and 19.84 ± 5.0 mmHg in group 2 (p <0.001). PAP decrease to 22.38 ±4.28 mmHg postoperatively in group 1 (p <0.001). Arterial oxygen saturation (spo2%) increase from 93.5 ± 1.9% preoperatively to 95.3 ± 1.3% post operatively (p < 0.001). percent reduction of PAP postoperatively correlates to age (t=−2.3, p= 0.02), preoperative PAP (p =0.01) but no correlation was found with BMI. In conclusions, this Study showed that obstructed adenoid and hypertrophy of tonsils causes higher mean pulmonary artery pressure in adult & revealed that tonsil& adenoid is effective therapeutic measure in such patients. With early intervention is necessary to avoid progressive cardiopulmonary disease.


1975 ◽  
Vol 38 (5) ◽  
pp. 786-775 ◽  
Author(s):  
A. L. Muir ◽  
D. C. Flenley ◽  
B. J. Kirby ◽  
M. F. Sudlow ◽  
A. R. Guyatt ◽  
...  

We have studied the cardiorespiratory effects of the rapid infusion (100 ml/min) of 2 liters of saline in four normal seated subjects. Cardiac output and pulmonary arterial pressure increased, while vital capacity (VC) and total lung capacity (TLC) decreased. There was an increase in closing volume (CV) without any detectable change in lung compliance or flow-volume characteristics. There was an increase in Pao2 during infusion period which can be related to better matching of ventilation to perfusion and to improved hemoglobin transport. In the recovery stage as cardiac output, pulmonary arterial pressure, TLC, and VC all returned toward control values CV remained high. In two subjects CV occurred within the normal tidal range of ventilation and in these two subjects Pao2 fell significantly below values obtained in the control period. The results suggest that rapid saline infusion in man can cause interstitial edema and lead to premature airway closure and hypoxemia.


PEDIATRICS ◽  
1961 ◽  
Vol 28 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Abraham M. Rudolph ◽  
Peter A. M. Auld ◽  
Richard J. Golinko ◽  
Milton H. Paul

Pulmonary arterial or right ventricular pressures were measured repeatedly in 18 puppies and 2 goats, from 1 to 36 days of age; these pressures were measured with the use of indwelling catheters in unanesthetized animals. In puppies the systolic pressure in the pulmonary circulation decreased rapidly to near adult levels in 5 to 10 days after birth, and then more slowly to adult levels by 5 to 6 weeks of age. In goats the pressures decreased more slowly, reaching near adult levels in about 12 to 14 days. Acetylcholine produced a decrease in pulmonary arterial pressure in the puppy in the first 5 days of life, but an increase in pulmonary pressure after that time in the resting animal. In the hypoxic puppy, a reduction in pulmonary arterial pressure was induced by acetylcholine. These findings suggest that the pulmonary vessels in the young puppy are actively constricted but that relaxation occurs after the first few days of life.


1982 ◽  
Vol 52 (3) ◽  
pp. 705-709 ◽  
Author(s):  
B. R. Walker ◽  
N. F. Voelkel ◽  
J. T. Reeves

Recent studies have shown that vasodilator prostaglandins are continually produced by the isolated rat lung. We postulated that these vasodilators may contribute to maintenance of normal low pulmonary arterial pressure. Pulmonary pressure and cardiac output were measured in conscious dogs prior to and 30 to 60 min following administration of meclofenamate (2 mg/kg iv, followed by infusion at 2 mg . kg-1 . h-1) or the structurally dissimilar inhibitor RO–20–5720 (1 mg/kg iv, followed by infusion at 1 mg . kg-1 . h-1). The animals were also made hypoxic with inhalation of 10% O2 before and after inhibition. Time-control experiments were conducted in which only the saline vehicle was administered. Meclofenamate or RO–20–5720 caused an increase in mean pulmonary arterial pressure and total pulmonary resistance. Cardiac output and systemic pressure were unaffected. The mild hypoxic pulmonary pressor response observed was not affected by meclofenamate. Animals breathing 30% O2 to offset Denver's altitude also demonstrated increased pulmonary pressure and resistance when given meclofenamate. It is concluded that endogenous vasodilator prostaglandins may contribute to normal, low vascular tone in the pulmonary circulation.


1963 ◽  
Vol 18 (3) ◽  
pp. 544-552 ◽  
Author(s):  
D. F. J. Halmagyi ◽  
B. Starzecki ◽  
G. J. Horner

The cardiopulmonary consequences of coli-lipopolysaccharide and staphylococcus toxin administration were studied in sheep. Circulatory changes consisted mainly of a marked rise in pulmonary arterial and pulmonary arterial wedge pressure (with left atrial pressure unchanged), and a fall in cardiac output and in systemic arterial pressure. Fall in the latter closely followed the onset of pulmonary hypertension. The respiratory response consisted mainly of a severe fall in lung compliance produced by terminal airway closure. Continued perfusion of the nonventilated alveoli resulted in venous admixture. Premedication with antihistaminic, antiserotonin, or adrenolytic agents failed to affect the response. Norepinephrine or hypertensin administered after toxin injection had virtually no effect while isoproterenol treatment reduced pulmonary arterial pressure, increased cardiac output, arterial oxygen saturation, and, in cases of endotoxin shock, promptly raised systemic arterial pressure. Endotoxin-resistant sheep proved nonresponsive to minor pulmonary embolism and to incompatible blood transfusion. It is suggested that a common mediator agent is responsible for the similar cardiopulmonary consequences of these three diverse conditions. Submitted on November 26, 1962


1964 ◽  
Vol 19 (4) ◽  
pp. 707-712 ◽  
Author(s):  
I. Bruderman ◽  
K. Somers ◽  
W. K. Hamilton ◽  
W. H. Tooley ◽  
J. Butler

The hypothesis that the surface tension of the fluid film which lines the lung alveoli reduces the pericapillary pressure in air-filled lungs was tested by perfusing the excised lungs of dogs with saline, 6% dextran in saline, and blood. After almost maximal inflation with air from low volumes or the degassed state (inflation state) the pulmonary arterial pressure, relative to the base of the lungs, was lower than the alveolar pressure with flows up to 50 ml/min. It was higher than the alveolar pressure at any flow when the air-liquid interface had been abolished by filling the lungs to the same volume with fluid. The pulmonary arterial pressure at the same flow and alveolar pressure was lower in the inflation state than after deflation from higher volumes (the deflation state). However, lung volume was larger in the deflation state. The possibility of some low resistance channels in the inflation state could not be excluded. However, histological examinations showed that the alveolar capillaries were patent and failed to show any airless lung. pulmonary circulation; pericapillary pressure in lungs; surface tension and pulmonary vascular resistance Submitted on July 29, 1963


2007 ◽  
Vol 293 (5) ◽  
pp. L1306-L1313 ◽  
Author(s):  
Jasdeep S. Dhaliwal ◽  
David B. Casey ◽  
Anthony J. Greco ◽  
Adeleke M. Badejo ◽  
Thomas B. Gallen ◽  
...  

The small GTP-binding protein and its downstream effector Rho kinase play an important role in the regulation of vasoconstrictor tone. Rho kinase activation maintains increased pulmonary vascular tone and mediates the vasoconstrictor response to nitric oxide (NO) synthesis inhibition in chronically hypoxic rats and in the ovine fetal lung. However, the role of Rho kinase in mediating pulmonary vasoconstriction after NO synthesis inhibition has not been examined in the intact rat. To address this question, cardiovascular responses to the Rho kinase inhibitor fasudil were studied at baseline and after administration of an NO synthesis inhibitor. In the intact rat, intravenous injections of fasudil cause dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and increases in cardiac output. l-NAME caused a significant increase in pulmonary and systemic arterial pressures and a decrease in cardiac output. The intravenous injections of fasudil after l-NAME caused dose-dependent decreases in pulmonary and systemic arterial pressure and increases in cardiac output, and the percent decreases in pulmonary arterial pressure in response to the lower doses of fasudil were greater than decreases in systemic arterial pressure. The Ca++ entry blocker isradipine also decreased pulmonary and systemic arterial pressure in l-NAME-treated rats. Infusion of sodium nitroprusside restored pulmonary arterial pressure to baseline values after administration of l-NAME. These data provide evidence in support of the hypothesis that increases in pulmonary and systemic vascular resistance following l-NAME treatment are mediated by Rho kinase and Ca++ entry through L-type channels, and that responses to l-NAME can be reversed by an NO donor.


1983 ◽  
Vol 55 (2) ◽  
pp. 558-561 ◽  
Author(s):  
J. Lindenfeld ◽  
J. T. Reeves ◽  
L. D. Horwitz

In resting conscious dogs, administration of cyclooxygenase inhibitors results in modest increases in pulmonary arterial pressure and pulmonary vascular resistance, suggesting that vasodilator prostaglandins play a role in maintaining the low vascular resistance in the pulmonary bed. To assess the role of these vasodilator prostaglandins on pulmonary vascular resistance during exercise, we studied seven mongrel dogs at rest and during exercise before and after intravenous meclofenamate (5 mg/kg). Following meclofenamate, pulmonary vascular resistance rose both at rest (250 24 vs. 300 +/- 27 dyn . s . cm-5, P less than 0.01) and with exercise (190 +/- 9 vs. 210 +/- 12 dyn . s . cm-5, P less than 0.05). Systemic vascular resistance rose slightly following meclofenamate both at rest and during exercise. There were no changes in cardiac output. The effects of cyclooxygenase inhibition, although significant, were less during exercise than at rest. This suggests that the normal fall in pulmonary vascular resistance during exercise depends largely on factors other than vasodilator prostaglandins.


Peptides ◽  
1987 ◽  
Vol 8 (2) ◽  
pp. 285-290 ◽  
Author(s):  
K. Naruse ◽  
M. Naruse ◽  
T. Honda ◽  
K. Obana ◽  
H. Sakurai ◽  
...  

1977 ◽  
Vol 55 (6) ◽  
pp. 1369-1377 ◽  
Author(s):  
Philip J. Kadowitz ◽  
Ernst W. Spannhake ◽  
Stan Greenberg ◽  
Larry P. Feigen ◽  
Albert L. Hyman

The effects of bolus injections of the postaglandin precursor, arachidonic acid, and PGD2, PGF2α, PGE2, and the PGH2 analog ((15S)-hydroxyl-9α,11α(epoxymethano)-prosta-5Z-dienoic acid) were compared on the pulmonary circulation in the intact spontaneously breathing pentobarbital-anesthetized dog. Arachidonic acid increased pulmonary arterial pressure, decreased aortic pressure, and increased cardiac output when injected into the superior vena cava or right atrium. PGE2, like arachidonic acid, increased pulmonary arterial pressure and cardiac output and decreased aortic pressure, whereas PGF2α and PGD2 increased pulmonary arterial pressure but did not affect cardiac output or aortic pressure when injected into the superior vena cava or right atrium. The PGH2 analog increased pulmonary arterial pressure and to a lesser extent, aortic pressure, without affecting cardiac output. None of these substances changed left atrial or right atrial pressure. The cardiopulmonary effects of arachidonic acid were blocked by indomethacin whereas the rise in pulmonary arterial pressure in response to the bisenoic prostaglandins and the analog were enhanced by the cyclooxygenase inhibitor. These data suggest that the increase in pulmonary vascular resistance in response to arachidonic acid may be due to conversion of the precursor into vasoactive intermediates and products such as bisenoic prostaglandins whereas the decrease in systemic vascular resistance is probably due to the formation of PGE2 and other peripheral vasodilator substances.


Sign in / Sign up

Export Citation Format

Share Document