Modifications of Plasma Post-Heparin Lipolytic Activity and Tissue Lipoprotein Lipase Activity Induced in the Rat by Acute Administration of Ethanol or Propan-2-ol

1975 ◽  
Vol 48 (2) ◽  
pp. 153-156
Author(s):  
Y. Giudicelli ◽  
R. Nordmann ◽  
J. Nordmann

1. The oral administration of propan-2-ol [isopropanol; 100 mmol (6 g)/kg body weight] or ethanol [130 mmol (6 g)/kg body weight] to starved rats produced no change in plasma post-heparin lipase activity (PHLA) compared with that observed in 154 mmol/l sodium chloride (saline)-treated rats. 2. An increase of adipose tissue lipoprotein lipase (LLA) and a decrease of heart LLA occurred in isopropanol-treated animals, whereas no significant changes were found in these activities after ethanol administration. 3. Since administration of isopropanol produces hyperglycaemia, observations were also made in rats receiving glucose infusion rather than saline. In these animals a rise in PHLA and adipose tissue LLA, and a fall in heart LLA, occurred. 4. It is suggested that the changes in tissue LLA produced by isopropanol are mediated by the rise in blood glucose.

1974 ◽  
Vol 46 (5) ◽  
pp. 661-664
Author(s):  
R. S. Elkeles ◽  
E. Williams

1. Alloxan-diabetic rats showed raised plasma triglyceride levels and low adipose tissue lipoprotein lipase activity compared with controls. Heart lipoprotein lipase activity appeared unaltered by the diabetic state. 2. Plasma post-heparin lipolytic activity was slightly but not significantly increased in the diabetic group. The significance of these findings is discussed.


1981 ◽  
Vol 240 (5) ◽  
pp. E533-E538 ◽  
Author(s):  
I. Ramirez

Daily injections of 5 micrograms estradiol benzoate (EB) for 1, 2, 3, and 12 days decreased parametrial and retroperitoneal adipose tissue lipoprotein lipase activity in ovariectomized rats. Nearly all of this decrease occurred within the 1st day. In contrast, EB-induced body weight loss and hypophagia were very slight during the 1st day after EB administration and increased substantially over the next 2 days. EB did not affect gastrocnemius muscle lipoprotein lipase activity over the first 3 days, but did decrease muscle lipoprotein lipase activity after 12 days. These changes in adipose and muscle lipoprotein lipase activity suggested that EB-induced redistribution of fuel would be greater after 3 days of treatment than after 12 days of treatment. Tests with two different in vivo triglyceride uptake methods confirmed this suggestion. EB-treated rats were hypertriglyceridemic after 12 days of treatment, but not after 3 days of treatment. Elevated plasma triglycerides were associated with an increased rate of triglyceride entry. These findings are consistent with the hypothesis that EB administration temporarily results in redistribution of triglyceride fuel from adipose tissue to muscle, resulting in a transient decrease in rate of weight gain.


1978 ◽  
Vol 176 (3) ◽  
pp. 865-872 ◽  
Author(s):  
P Ashby ◽  
D P Bennett ◽  
I M Spencer ◽  
D S Robinson

Changes in adipose-tissue lipoprotein lipase activity that are independent of protein synthesis were investigated in an incubation system in vitro. Under appropriate conditions at 25 degrees C a progressive increase in the enzyme activity occurs that is energy-dependent. Part of the enzyme is rapidly inactivated when the tissue is incubated with adrenaline or adrenaline plus theophylline. The mechanism of this inactivation appears to be distinct from, and to follow, the activation of the enzyme. A hypothesis is presented to account for the results in terms of an activation of the enzyme during obligatory post-translational processing and a catecholamine-regulated inactivation of the enzyme as an alternative to secretion from the adipocyte.


1973 ◽  
Vol 132 (3) ◽  
pp. 633-635 ◽  
Author(s):  
P. de Gasquet ◽  
E. Péquignot ◽  
D. Lemonnier ◽  
A. Alexiu

The lipoprotein lipase activity per adipocyte was increased in the genetically obese rat (fa/fa). However, there was no difference between obese and lean animals when the enzyme activities were related to adipocyte surface area. The possible implications of the findings are discussed.


1989 ◽  
Vol 257 (4) ◽  
pp. R711-R716 ◽  
Author(s):  
D. B. West ◽  
W. A. Prinz ◽  
M. R. Greenwood

Adipose tissue blood flow was measured in five depots, and plasma concentrations of glucose, insulin, and triglyceride were measured at 0, 15, 30, and 45 min after the start of a meal in unanesthetized, freely moving rats. In addition, adipose tissue lipoprotein lipase activity was measured in four depots before and 45 min after the start of a meal. Plasma glucose was significantly elevated only at the 15-min time point, and while plasma triglyceride increased these changes did not reach significance. Plasma insulin was significantly elevated at all time points after a meal. Feeding resulted in a consistent decrease of adipose tissue blood flow expressed per gram wet weight of tissue. This decrease was maximal at 30 min after the start of feeding. The decrease in adipose tissue blood flow averaged 45% at 45 min after the start of feeding for the five depots evaluated. Lipoprotein lipase activity significantly increased in the retroperitoneal and mesenteric fat depots at 45 min after the meal start, but did not change in the epididymal or dorsal subcutaneous fat depots. These results suggest that a decrease in adipose tissue blood flow is a normal result of a meal in the rat. The regional specificity of changes in adipose tissue lipoprotein lipase activity supports the concept of regional specificity of function for adipose tissue and suggests that the mesenteric and retroperitoneal depots are particularly important for the storage of triglycerides immediately after a meal.


Metabolism ◽  
1979 ◽  
Vol 28 (11) ◽  
pp. 1122-1126 ◽  
Author(s):  
Andrew P. Goldberg ◽  
Deborah M. Applebaum-Bowden ◽  
William R. Hazzard

1985 ◽  
Vol 38 (1) ◽  
pp. 131
Author(s):  
RK Tume ◽  
RF Thornton

The effects of species and plane of nutrition on serum activation of sheep adipose tissue lipoprotein lipase were studied over a range of substrate (triolein) concentrations. Serum, either from two species or from the same species on a different plane of nutrition, had differing effects on adipose tissue lipoprotein lipase activity. Serum from fed sheep was more effective than serum from fed rats in activating sheep adipose tissue lipoprotein lipase at low substrate concentrations. Serum taken from sheep on a restricted plane of nutrition, stimulated adipose tissue lipoprotein lipase activity at physiological substrate concentrations. The increased activity promoted by the factor(s) present in serum would ensure that those tissues (e.g. cardiac and skeletal muscle) which continue to synthesize lipoprotein lipase during fasting or nutritional restriction, are able to assimilate the relatively low amounts of circulating triacylglycerol.


Sign in / Sign up

Export Citation Format

Share Document