The Role of the Renin—Angiotensin—Aldosterone System in Cardiovascular Homeostasis in Normal Man

1974 ◽  
Vol 48 (s2) ◽  
pp. 49s-52s ◽  
Author(s):  
E. Haber ◽  
J. Sancho ◽  
R. Re ◽  
J. Burton ◽  
A. C. Barger

1. To examine the role of angiotensin II in the maintenance of blood pressure and control of aldosterone secretion, eight normal human subjects were studied on a tilt table in sodium-replete and sodium-depleted states, before and after the administration of an angiotensin converting-enzyme inhibitor (CEI). 2. Administration of CEI was followed by a marked fall in blood pressure on tilting in sodium-depleted, but not in sodium-replete, subjects. CEI administration also resulted in a rise in plasma renin activity in the supine position, in the absence of haemodynamic change. The rise in plasma aldosterone observed both in response to tilting and sodium depletion did not occur after CEI, even though plasma renin activities were higher. 3. These results indicate that: (a) angiotensin II is essential for blood pressure control in the sodium-depleted individual; (b) angiotensin II exerts direct feedback control on renin secretion; (c) angiotensin II is the primary stimulus to aldosterone secretion in response to both sodium depletion and posture.

1978 ◽  
Vol 54 (1) ◽  
pp. 75-83 ◽  
Author(s):  
P. Van Hoogdalem ◽  
A. J. M. Donker ◽  
F. H. H. Leenen

1. Angiotensin II blockade before and after marked sodium depletion in patients with hypertension [unilateral renovascular (eight), bilateral renovascular (four) and essential (four)] was performed by intravenous administration of the angiotensin II antagonist Sar1-Ala8-angiotensin II (saralasin). 2. On normal sodium intake, saralasin decreased mean blood pressure by 8 mmHg in the unilateral renovascular group, by 6 mmHg in the bilateral renovascular group and increased it by 3 mmHg in the essential hypertensive group. After sodium depletion saralasin decreased mean blood pressure by 33 mmHg, 35 mmHg and 18 mmHg respectively. The saralasin-induced decrease in blood pressure significantly correlated with the log of the initial plasma renin activity. 3. Saralasin infusion decreased effective renal plasma flow (ERPF) in all three hypertension subgroups, both on normal sodium intake and after sodium depletion. Glomerular filtration rate decreased in direct relation to the hypotensive effect of saralasin but ERPF showed this relationship only after sodium depletion. On normal sodium intake saralasin increased filtration fraction by 17%, but decreased it by 7% after sodium depletion. 4. It is concluded that the hypotensive action of saralasin closely correlates with the value of circulating plasma renin activity, apparently independent of the aetiology of the hypertension. The decrease in ERPF during saralasin infusion in the patients on normal sodium intake seems mainly related to the agonistic activity of saralasin, but that after sodium depletion to the hypotensive effect of saralasin.


1971 ◽  
Vol 16 (3) ◽  
pp. 183-196 ◽  
Author(s):  
J. I. S. Robertson ◽  
R. J. Weir ◽  
G. O. Düsterdieck ◽  
R. Fraser ◽  
M. Tree

Aldosterone secretion is frequently, although not invariably, increased above the normal non-pregnant range in normal pregnancy. Substantial increases in plasma aldosterone concentration have also been demonstrated as early as the sixteenth week. In pregnancy, aldosterone secretion rate responds in the usual way to changes in sodium intake. Plasma renin concentration is frequently, but not invariably, raised above the normal non-pregnant range. Plasma renin-substrate is consistently raised in pregnancy. Plasma angiotensin II has also been shown usually to be raised in a series of pregnant women. A significant positive correlation has been shown between the maternal plasma aldosterone concentration and the product of the concurrent plasma renin and renin-substrate concentrations. This suggests that the increased plasma aldosterone in pregnancy is the consequence of an increase in circulating angiotensin II, which in turn is related to the level of both renin and its substrate in maternal blood. For these reasons, estimations of renin activity in pregnancy are of dubious value. The increased renin, angiotensin and aldosterone concentrations may represent a tendency to maternal sodium depletion, probably mainly a consequence of the increased glomerular filtration rate. It is possible that the nausea and other symptoms of early pregnancy may be a consequence of this tendency to sodium depletion, with its attendant hormonal changes. In ‘pre-eclampsia’, renin and aldosterone values are generally slightly lower than in normal pregnancy. Human chorion can apparently synthesize renin independently of the kidney. The physiological significance of this remains at present obscure, but it seems unlikely that this source contributes much, if at all, to the often elevated maternal plasma renin. Plasma renin, renin-activity and angiotensin II concentrations, and aldosterone secretion are increased in the luteal phase of the menstrual cycle.


1993 ◽  
Vol 265 (3) ◽  
pp. R591-R595 ◽  
Author(s):  
R. L. Thunhorst ◽  
S. J. Lewis ◽  
A. K. Johnson

Intracerebroventricular (icv) infusion of angiotensin II (ANG II) in rats elicits greater water intake under hypotensive, compared with normotensive, conditions. The present experiments used sinoaortic baroreceptor-denervated (SAD) rats and sham-operated rats to examine if the modulatory effects of arterial blood pressure on water intake in response to icv ANG II are mediated by arterial baroreceptors. Mean arterial blood pressure (MAP) was raised or lowered by intravenous (i.v.) infusions of phenylephrine (1 or 10 micrograms.kg-1 x min-1) or minoxidil (25 micrograms.kg-1 x min-1), respectively. The angiotensin-converting enzyme inhibitor captopril (0.33 mg/min) was infused i.v. to prevent the endogenous formation of ANG II during testing. Urinary excretion of water and solutes was measured throughout. Water intake elicited by icv ANG II was inversely related to changes in MAP. Specifically, rats drank more water in response to icv ANG II when MAP was reduced by minoxidil but drank less water when MAP was elevated by phenylephrine. The influence of changing MAP on the icv ANG II-induced drinking responses was not affected by SAD. These results suggest that the modulatory effects of arterial blood pressure on icv ANG II-induced drinking can occur in the absence of sinoaortic baroreceptor input.


1982 ◽  
Vol 243 (1) ◽  
pp. E48-E51 ◽  
Author(s):  
H. Suzuki ◽  
M. Handa ◽  
K. Kondo ◽  
T. Saruta

The role of the renin-angiotensin system in the regulation of the blood pressure of dexamethasone-treated rats (Dex) was evaluated using saralasin, an angiotensin II antagonist, and SQ 14225 (SQ) (d-3-mercapto-2-methylpropranoyl-1-proline), an angiotensin-converting enzyme inhibitor. During a 7-day period blood pressure rose 65 +/- 10 mmHg (P less than 0.001) in Dex with no significant changes in plasma renin activity. Concurrent administration of dexamethasone and SQ attenuated the elevation of blood pressure (P less than 0.05). In the conscious, freely moving state, intravenous injection of SQ (10, 30, 100 micrograms/kg) reduced blood pressure of DEX in a dose-dependent manner (P less than 0.05). Also, intravenous injection of saralasin (10 micrograms.kg-1 . min-1) reduced blood pressure significantly (P less than 0.01). Bilateral nephrectomy abolished the effects of saralasin and SQ on blood pressure in Dex. These results indicate that the elevation of blood pressure in DEX depends partially on the renin-angiotensin system.


1982 ◽  
Vol 100 (4) ◽  
pp. 581-587 ◽  
Author(s):  
Bengt E. Karlberg ◽  
Anna-Maria Ottosson

Abstract. The incidence of arterial hypertension was evaluated in a partly retrospective study of patients with active acromegaly. Of 37 patients studied, 18 (48%) had hypertension, i.e. a supine blood pressure of > 160/95 mmHg. The type of hypertension was explored further by measuring plasma renin activity and, in some patients plasma aldosterone concentrations before and after stimulation (upright posture or furosemide 80 mg given orally). Urinary 24 h excretion of aldosterone was also determined. About half of the patients with hypertension but also a substantial part of normotensive acromegalics had inappropriately low plasma renin levels both during basal conditions and after stimulation. On the other hand urinary aldosterone excretion was either normal or (in 2 patients) slightly elevated. There was no other evidence of coexistent primary aldosteronism. Our results confirm previous reports of a high frequency of alterations in the renin-angiotensin-aldosterone system in acromegalic patients with growth hormone excess which in some instances may lead to an elevated blood pressure. The biochemical changes have many similarities to low renin essential hypertension. A volume factor may be operating in acromegalic patients with hypertension since in 10 patients treatment with the aldosterone antagonist, spironolactone, with doses between 50–200 mg daily lowered blood pressure to near normal levels. Thus, spironolactone seems to be a worthwhile alternative in the treatment of hypertensive acromegalics.


1986 ◽  
Vol 250 (6) ◽  
pp. R960-R972 ◽  
Author(s):  
J. E. Hall

Angiotensin II (ANG II) is one of the body's most powerful regulators of Na excretion, operating through extrarenal mechanisms, such as stimulation of aldosterone secretion, as well as intrarenal mechanisms. Considerable evidence suggests that the intrarenal actions of ANG II are quantitatively more important than changes in aldosterone secretion in the normal day-to-day regulation of Na balance and arterial pressure. ANG II at physiological concentrations increases proximal tubular reabsorption, but further studies are needed to determine whether ANG II also has an important effect on more distal tubular segments. ANG II also markedly constricts efferent arterioles, tending to increase Na reabsorption by altering peritubular capillary physical forces and also helping to prevent excessive decreases in glomerular filtration rate. ANG II may also decrease Na excretion and increase urine concentrating ability by reducing renal medullary blood flow. Regulation of Na excretion by ANG II is closely linked with arterial pressure control and volume homeostasis through the renal pressure natriuresis mechanism. Under many physiological conditions, such as changes in Na intake, ANG II greatly multiplies the effectiveness of the pressure natriuresis mechanism to prevent fluctuations in body fluid volume and arterial pressure. In circumstances associated with circulatory depression, such as decreased cardiac function, reductions in blood pressure and increased ANG II formation cause Na retention until arterial pressure is restored to normal. However, in pathophysiological conditions in which ANG II is inappropriately elevated, increased arterial pressure (hypertension) is required for the kidney to "escape" the potent antinatriuretic actions of ANG II and to return Na excretion to normal via the pressure natriuresis mechanism.


1981 ◽  
Vol 61 (s7) ◽  
pp. 289s-293s ◽  
Author(s):  
F. Mantero ◽  
F. Fallo ◽  
G. Opocher ◽  
D. Armanini ◽  
M. Boscaro ◽  
...  

1. Patients with idiopathic hyperaldosteronism (IHA) show a response of aldosterone to posture which is not present in patients with aldosterone-producing adenoma (APA). We have determined whether this could be explained by a different sensitivity to angiotensin II. 2. Angiotensin II was infused in gradually increasing doses in six patients with APA and in seven patients with IHA. No changes in aldosterone concentration were found at the end of each period in APA, whereas there was a significant increase in IHA; blood pressure rose by a similar extent in both groups. 3. In order to evaluate the role of endogenous angiotensin II, captopril, a converting enzyme inhibitor, was administered to six patients with APA and five patients with IHA at a dose of 75 mg/day for 1 week. There was a significant fall of mean blood pressure in IHA and only minimal changes in APA. Plasma renin activity and plasma and urinary aldosterone were unchanged in APA. In IHA there was a small increase in upright plasma renin activity and a slight decrease in both plasma and urinary aldosterone, but these changes were not significant. 4. These findings further support the idea that idiopathic hyperaldosteronism is a clinical state different from that occurring in primary aldosteronism due to adenoma, and may be more closely related to essential hypertension.


1984 ◽  
Vol 246 (6) ◽  
pp. H811-H817 ◽  
Author(s):  
A. Kumar ◽  
R. F. Bing ◽  
J. D. Swales ◽  
H. Thurston

Reversal of early Goldblatt two-kidney, one-clip hypertension is associated with a fall in plasma renin. To define the role of this in blood pressure normalization we maintained preoperative hypertension for 12 h after unclipping or removal of the ischemic kidney, by angiotensin II or norepinephrine infusions during continuous blood pressure monitoring. High infusion rates of angiotensin II (1 microgram X kg-1 X min-1) were needed to reproduce hypertensive pressures. On stopping angiotensin II there was a rapid initial fall in blood pressure but not to normal (176 +/- 3.1 to 138 +/- 4.3 mmHg at 1 h), and a later slower fall to normal by 24 h (114 +/- 3.9). This response was identical to that of dextrose-infused animals (180 +/- 8.2 to 146 +/- 7.0 at 1 h and 113 +/- 5.6 at 24 h), apart from a transient rise in blood pressure associated with hyperreninemia in unclipped animals 12 h postinfusion. In contrast, after norepinephrine blood pressure fell immediately to normal. Similar responses were seen in normal rats after 12-h pressor infusions of angiotensin II or norepinephrine. These results show that the fast and slow components of the blood pressure fall following reversal of Goldblatt hypertension are delayed but otherwise unaltered specifically by angiotensin II. The need for pharmacologic doses, however, suggests that mechanisms in addition to the direct vasopressor action of angiotensin II are involved.


Sign in / Sign up

Export Citation Format

Share Document