Role of arteria baroreceptor input on thirst and urinary responses to intracerebroventricular angiotensin II

1993 ◽  
Vol 265 (3) ◽  
pp. R591-R595 ◽  
Author(s):  
R. L. Thunhorst ◽  
S. J. Lewis ◽  
A. K. Johnson

Intracerebroventricular (icv) infusion of angiotensin II (ANG II) in rats elicits greater water intake under hypotensive, compared with normotensive, conditions. The present experiments used sinoaortic baroreceptor-denervated (SAD) rats and sham-operated rats to examine if the modulatory effects of arterial blood pressure on water intake in response to icv ANG II are mediated by arterial baroreceptors. Mean arterial blood pressure (MAP) was raised or lowered by intravenous (i.v.) infusions of phenylephrine (1 or 10 micrograms.kg-1 x min-1) or minoxidil (25 micrograms.kg-1 x min-1), respectively. The angiotensin-converting enzyme inhibitor captopril (0.33 mg/min) was infused i.v. to prevent the endogenous formation of ANG II during testing. Urinary excretion of water and solutes was measured throughout. Water intake elicited by icv ANG II was inversely related to changes in MAP. Specifically, rats drank more water in response to icv ANG II when MAP was reduced by minoxidil but drank less water when MAP was elevated by phenylephrine. The influence of changing MAP on the icv ANG II-induced drinking responses was not affected by SAD. These results suggest that the modulatory effects of arterial blood pressure on icv ANG II-induced drinking can occur in the absence of sinoaortic baroreceptor input.

1982 ◽  
Vol 243 (3) ◽  
pp. F260-F264 ◽  
Author(s):  
P. R. Kastner ◽  
J. E. Hall ◽  
A. C. Guyton

Studies were performed to quantitate the effects of progressive increases in renal venous pressure (RVP) on renin secretion (RS) and renal hemodynamics. RVP was raised in 10 mmHg increments to 50 mmHg. Renin secretion rate increased modestly as RVP was increased to 30 mmHg and then increased sharply after RVP exceeded 30 mmHg. Glomerular filtration rate (GFR), renal blood flow (RBF), and filtration fraction (FF) did not change significantly when RVP was elevated to 50 mmHg. GFR and RBF were also measured after the renin-angiotension system (RAS) was blocked with the angiotensin converting enzyme inhibitor (CEI) SQ 14225. After a 60-min CEI infusion, RBF was elevated (32%), GFR was unchanged, FF was decreased, and total renal resistance (TRR) was decreased. As RVP was increased to 50 mmHg, GFR and FF decreased to 36.3 and 40.0% of control, respectively, RBF returned to a value not significantly different from control, and TRR decreased to 44.8% of control. The data indicate that the RAS plays an important role in preventing reductions in GFR during increased RVP because blockade of angiotensin II (ANG II) formation by the CEI results in marked decreases in GFR at high RVPs. The decreases in GFR after ANG II blockade and RVP elevation were not due to lack of renal vasodilation, since TRR was maintained below while RBF was maintained either above or at the pre-CEI levels.


1988 ◽  
Vol 255 (3) ◽  
pp. H483-H491 ◽  
Author(s):  
P. H. Brand ◽  
P. J. Metting ◽  
S. L. Britton

The roles of the autonomic nervous system, vasopressin, and angiotensin II in support of blood pressure were evaluated in seven conscious, resting dogs while hydrated or dehydrated. Mean arterial blood pressure (MAP) was monitored, and the dogs were given hexamethonium to block autonomic ganglia. Thirty minutes later, they were given captopril, and after another 30 min, a vasopressin V1 antagonist, d(CH2)5TyrMeAVP, was given. The order okf administration of captopril and d(CH2)5TyrMeAVP was alternated in different experiments. Hexamethonium had no effect on steady-state MAP in either hydrated or dehydrated dogs. In hydrated dogs, the average MAP was 100 mmHg; d(CH2)5TyrMeAVP decreased MAP by approximately 12 mmHg, and captopril decreased MAP by 24 mmHg. The magnitude of the effect of these two inhibitors was independent of the order of their administration. Dehydration doubled the effect of d(CH2)5TyrMeAVP on MAP but had no effect on the response to captopril. The results suggest that 1) autonomic function is not essential for maintenance of arterial blood pressure in resting dogs; 2) during autonomic ganglionic blockade, arterial blood pressure is supported by both angiotensin II and vasopressin; and 3) dehydration increases the role of vasopressin in control of blood pressure.


1982 ◽  
Vol 243 (3) ◽  
pp. R354-R362 ◽  
Author(s):  
T. N. Thrasher ◽  
L. C. Keil ◽  
D. J. Ramsay

The effect of an acute reduction in venous return, caused by reversible constriction of the thoracic vena cava, on drinking and secretion or arginine vasopressin (AVP) was examined in the dog. Plasma AVP levels rose immediately from a control level of 1.4 +/- 0.1 pg/ml (mean +/- SE) to a plateau ranging between 36 and 42 pg/ml during the first 30 min after constriction but declined to 12.6 +/- 4.2 pg/ml 2 h after constriction even though systemic arterial hypotension was maintained. Drinking occurred with a latency of 22 +/- 6 min and 13.2 +/- 1.8 ml H2O/kg was consumed during 2 h of vena caval constriction. Water intake was significantly correlated with the average reduction in blood pressure (r = 0.86; n = 8; P less than 0.01) but not with plasma renin activity. The role of angiotensin II (ANG II) in the drinking and secretion of AVP in response to decreased venous return was evaluated using the ANG II receptor blocker, saralasin, infused intravenously (iv) or intracerebroventricularly (icv). Intravenous, but not icv, infusion of saralasin during vena caval constriction reduced the ability of the dogs to maintain arterial blood pressure (P less than 0.05). However, neither iv nor icv saralasin significantly affected water intake or the rise in plasma AVP in response to vena caval constriction when compared to their respective controls. Taken together, these data show that angiotensin is important in the maintenance of systemic arterial blood pressure but is not essential for the rise in plasma AVP or drinking in response to an acute reduction in venous return. It is suggested that either arterial baroreceptors or "low-pressure" volume receptors or both mediate the drinking and AVP responses in the presence of central blockade of the effects of circulating angiotensin.


1993 ◽  
Vol 264 (1) ◽  
pp. R211-R217 ◽  
Author(s):  
R. L. Thunhorst ◽  
A. K. Johnson

These experiments examined the dipsogenic responses of rats to intracerebroventricularly administered angiotensin II (ANG II) under normotensive and hypotensive conditions. Intravenous infusion of the vasodilator drug minoxidil (25 micrograms.kg-1.min-1), combined with the angiotensin converting enzyme inhibitor captopril (0.33 mg/min), both reduced blood pressure and prevented endogenous ANG II formation. Central infusions with ANG II (4 or 16 ng/h) began 60 min later, and the intravenous and intracerebroventricular infusions ran concurrently for another 90 min. Mean arterial pressure (MAP), water intake, urine volume (UV) and electrolyte excretion were measured throughout. Water intakes to both doses of intracerebroventricular ANG II were increased, and UV and electrolyte excretion were reduced during hypotensive conditions compared with normotensive conditions. Thus the increased water intakes occurred despite increased fluid retention. It is concluded that arterial hypotension enhances the dipsogenic effects of centrally administered ANG II, possibly through baroreceptor-mediated mechanisms.


1995 ◽  
Vol 79 (5) ◽  
pp. 1657-1667 ◽  
Author(s):  
Y. Moue ◽  
P. G. Smith ◽  
R. L. Clancy ◽  
N. C. Gonzalez

Exposure to hypoxia (2–5 wk) results in systemic hypertension in rats and in humans. The possible mechanism(s) was investigated in rats acclimatized for 3 wk to barometric pressure of approximately 370 Torr (A) and in nonacclimatized littermates (NA) by administration of alpha-adrenergic [phentolamine (PHLM)], angiotensin II (ANG II), and arginine vasopressin (AVP V1) receptor antagonists. Both A and NA rats were studied in hypoxia (inspiratory O2 fraction = 0.10). Baseline mean arterial blood pressure (MABP) was higher in A than in NA rats: 126 +/- 4 vs. 101 +/- 2 mmHg (P < 0.05). Neither ANG II nor AVP V1 receptor antagonist influenced baseline MABP; however, both contributed to MABP recovery after PHLM. After simultaneous blockade of ANG II and AVP V1, PHLM lowered MABP by 65 +/- 2 and 45 +/- 3 mmHg in A and NA rats, respectively (P < 0.05). After combined blockade of the three systems, the smooth muscle relaxant sodium nitroprusside did not further modify MABP, which remained higher in A rats. It is concluded that 1) the hypertension in A rats is partly due to a higher alpha-adrenergic tone, 2) neither ANG II nor AVP contributes to the hypertension, but ANG II and AVP participate in MABP control after PHLM, 3) no other vasoconstrictor agents operate in either group, and 4) the higher MABP in A rats after sodium nitroprusside may reflect additional hypertensive mechanisms.


2003 ◽  
Vol 284 (3) ◽  
pp. H1003-H1007 ◽  
Author(s):  
Baojian Xue ◽  
Hope Gole ◽  
Jaya Pamidimukkala ◽  
Meredith Hay

This study reports the effects of angiotensin II (ANG II), arginine vasopression (AVP), phenylephrine (PE), and sodium nitroprusside (SNP) on baroreflex control of heart rate in the presence and absence of the area postrema (AP) in conscious mice. In intact, sham-lesioned mice, baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of ANG II were significantly less than those observed with similar increases in arterial pressure with PE (slope: −3.0 ± 0.9 vs. −8.1 ± 1.5 beats · min−1 · mmHg−1). Baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of AVP were the same as those observed with PE in sham animals (slope: −5.8 ± 0.7 vs. −8.1 ± 1.5 beats · min−1 · mmHg−1). After the AP was lesioned, the slope of baroreflex inhibition of heart rate was the same whether pressure was increased with ANG II, AVP, or PE. The slope of the baroreflex-induced increases in heart rate due to decreases in arterial blood pressure with SNP were the same in sham- and AP-lesioned animals. These results indicate that, similar to other species, in mice the ability of ANG II to acutely reset baroreflex control of heart rate is dependent on an intact AP.


1996 ◽  
Vol 270 (5) ◽  
pp. R1092-R1098 ◽  
Author(s):  
D. A. Fitts ◽  
R. L. Thunhorst

A role for the renal renin-angiotensin system in the direct stimulation of salt appetite in the rat remains controversial because attempts to elicit the behavior by intravenous administration of angiotensin II (ANG II) have been unconvincing. We recently demonstrated that depletion-induced salt appetite was attenuated by selective blockade of peripheral ANG II synthesis with an intravenous dose of converting enzyme inhibitor [captopril (Cap)] that does not block the synthesis of ANG II inside the blood brain barrier. We now show that intravenous ANG II at 30 ng/min rapidly reestablishes salt appetite in Cap-blocked rats. The mean arterial blood pressure (MAP) of unblocked, sodium-depleted rats was normal, but Cap-blocked, depleted rats had low MAP. An intravenous infusion of ANG II in Cap-blocked rats brought MAP into the normal range and elicited water and salt drinking within 90 min. Phenylephrine also normalized MAP but failed to elicit fluid intake in Cap-blocked, sodium-deficient rats. Sodium and water balances tended to be more positive during ANG II than during phenylephrine infusions. Thus circulating ANG II may stimulate both thirst and salt appetite by a direct action on the brain and not by causing natriuresis or by raising the blood pressure.


1991 ◽  
Vol 260 (6) ◽  
pp. R1152-R1158 ◽  
Author(s):  
T. Katafuchi ◽  
Y. Hattori ◽  
I. Nagatomo ◽  
K. Koizumi ◽  
E. Silverstein

The involvement of angiotensin II (ANG II) in the genetic polydipsia of the STR/N strain of mice was investigated. Daily water intake of the polydipsic inbred STR/N of both sexes ranged between five and eight times that of nonpolydipsic controls: STR/1N, a mutant of the STR/N, and Swiss-Webster (S/W) mice. Nevertheless the diurnal pattern of drinking was maintained in the STR/N. There was no difference in daily food intake, arterial blood pressure, and plasma renin activity among the three groups. Drinking responses to 48 h of water deprivation were not significantly different between the polydipsic mice and their control groups. Captopril, an angiotensin I converting-enzyme inhibitor, injected subcutaneously just before the dark period, reduced drinking for 6 h in the polydipsic strain only. Food intake of all three groups of mice was not affected. Similarly the ANG II antagonist saralasin, [Sar1,-Ile8]ANG II, injected into the lateral cerebroventricle just before the dark period, significantly reduced water intake for 6 h after injection in the polydipsic mice only. Intracerebroventricular injection of ANG II increased drinking in the nondeprived controls but not in the polydipsic mice. These findings suggest that the polydipsia in the STR/N mice may involve, at least in part, the ANG II system in the brain.


1989 ◽  
Vol 256 (2) ◽  
pp. H486-H492
Author(s):  
K. L. Ryan ◽  
R. M. Thornton ◽  
D. W. Proppe

This study primarily sought to determine whether the role of vasopressin (VP) in maintenance of arterial blood pressure is enhanced in awake, chronically instrumented baboons after 68-72 h of dehydration. This question was approached by pharmacologically blocking vasopressin V1-receptors in euhydrated and dehydrated baboons with or without a normally functioning renin-angiotensin system (RAS). VP blockade during dehydration produced a rapidly occurring (within 5 min), statistically significant (P less than 0.05) decrease in mean arterial pressure (MAP) of 5 +/- 1 mmHg in the RAS-intact condition and an identical decline in MAP (5 +/- 1 mmHg) during blockade of the RAS by captopril, an angiotensin I-converting enzyme inhibitor. At 15 min after induction of VP blockade, heart rate was elevated by 9 +/- 2 beats/min in the RAS-intact condition and by 20 +/- 5 beats/min in the RAS-blocked condition. In addition, VP blockade in the dehydrated state produced small and equal increases in hindlimb vascular conductance in RAS-intact and RAS-blocked conditions. None of these cardiovascular changes were produced by VP blockade in the euhydrated state. RAS blockade produced modest declines in MAP in both hydration states, but the fall was larger by 7 +/- 4 mmHg in the dehydrated state. Thus both VP and the RAS contribute to the maintenance of arterial blood pressure during dehydration in the conscious baboon.


2002 ◽  
Vol 283 (5) ◽  
pp. F1003-F1010 ◽  
Author(s):  
Catherine Ingert ◽  
Michèle Grima ◽  
Catherine Coquard ◽  
Mariette Barthelmebs ◽  
Jean-Louis Imbs

This study was designed to determine the involvement of AT1 receptors in the uptake of ANG II in the kidney of rats exposed to differing salt intake. Male Wistar-Kyoto rats were treated with a normal-salt (NS; 1% NaCl, n = 7) or a low-salt (LS; 0.025% NaCl, n = 7) diet combined with (LS+Los, n = 7; NS+Los, n = 7) or without losartan (30 mg · kg−1 · day−1), an AT1 receptor antagonist. Renin (RA) and angiotensin-converting enzyme (ACE) activities and angiotensinogen, ANG I, and ANG II levels were measured in plasma, renal cortex, and medulla. In LS rats, in both plasma and renal cortex, the increase in RA was associated with an increase in ANG I and ANG II levels compared with NS rats, but intrarenal ANG II levels increased more than ANG I levels. In NS+Los rats, the increase in RA in plasma was followed by a marked increase in plasma ANG I and ANG II levels compared with NS rats whereas in the kidney the increase of renal RA was followed by a decrease of the levels of these peptides. The same pattern was observed in LS+Los rats, but the decrease in renal ANG II levels was much more pronounced in LS+Los rats than in NS+Los rats. Our results suggest that the increase in renal ANG II levels after salt restriction results mainly from an uptake of ANG II, via AT1 receptors. Such elevated intrarenal ANG II levels could contribute to maintain sodium and fluid balance and arterial blood pressure during salt-deficiency states.


Sign in / Sign up

Export Citation Format

Share Document