Effect of Lysine Acetylsalicylate on Biliary Lipid Secretion in Dogs

1975 ◽  
Vol 49 (3) ◽  
pp. 253-256 ◽  
Author(s):  
S. Erlinger ◽  
Dominique Bienfait ◽  
Renee Poupon ◽  
Micheline Dumont ◽  
M. Duval

1. The influence of lysine acetylsalicylate on bile flow, erythritol clearance and bile salt, phospholipid and cholesterol secretion in bile was studied in unanaesthetized dogs fitted with a Thomas duodenal cannula. 2. Lysine acetylsalicylate induced a marked increase in bile flow and a parallel increase in erythritol clearance although the bile salt secretion remained unchanged; this suggests that the compound stimulated the formation of the canalicular (hepatocytic) bile salt-independent fraction of bile flow. 3. Lysine acetylsalicylate induced a significant decrease in biliary phospholipid and cholesterol secretion and the cholesterol saturation of bile was significantly reduced. 4. It is postulated that the decrease in phospholipid and cholesterol secretion resulted from the dilution of intracanalicular bile salts. This effect of lysine acetylsalicylate, and possibly of other bile salt-independent choleretics, may be of value in the treatment of cholesterol gallstones in man.

1976 ◽  
Vol 231 (6) ◽  
pp. 1875-1878 ◽  
Author(s):  
Y Delage ◽  
M Dumont ◽  
S Erlinger

The effect on sulfobromophathalein transport maximum (Tm) and biliary lipid secretion of sodium glyco-24,25-dihydrofusicate, a micelle-forming compound secreted into bile, has been studied in the hamster and compared to that of a physiological bile salt, sodium taurocholate. Biliary phospholipid and cholesterol secretion increased both during glycodihydrofusidate and taurocholate administration, an observation which suggest that both compounds increased th biliary secretion of micelle-forming compounds. In contrast, only taurocholate increased sulfobromophthalein Tm into bile, while glycodihydrofusidate administration decreased it. This observation suggests that the increase in sulfobromophthalein Tm observed during taurocholate administration is not the result of micellar sequestration. It could rather be the consequence of a specific effect of bile salts on the dye transport system.


1983 ◽  
Vol 245 (5) ◽  
pp. G651-G655 ◽  
Author(s):  
J. Reichen ◽  
M. Le

To determine whether bile salts alter the permeability of the biliary tree to inert solutes, we investigated the effects of taurocholate and taurodehydrocholate on [14C]sucrose bile-to-plasma ratio in the situ perfused rat liver. Sucrose bile-to-plasma ratio remained virtually constant over a 3-h period in untreated rats. Infusing increasing amounts of taurocholate produced the anticipated dose-dependent increase in bile flow and bile salt secretion up to a maximal secretory rate of 278 nmol X min-1 X g liver-1. When the secretory rate was exceeded, bile flow decreased by 22%. Even at doses below the maximal secretory rate, sucrose bile-to-plasma ratio increased in a dose-dependent fashion. To determine whether this was due to recruitment of more permeable centrizonal hepatocytes, the effect of equimolar amounts of taurodehydrocholate was determined. This nonmicelle-forming bile salt led to more marked choleresis than taurocholate but did not affect sucrose bile-to-plasma ratio. We conclude that taurocholate, but not taurodehydrocholate, leads to a dose-dependent increase in biliary permeability.


1986 ◽  
Vol 237 (1) ◽  
pp. 301-304 ◽  
Author(s):  
K Rahman ◽  
R Coleman

At high bile-salt-secretion rates the biliary secretion of phospholipids and cholesterol is dependent on that of the bile salts. However, at low bile-salt outputs some secretion remains. Isolated perfused rat livers were used in these experiments in order to study the bile-salt-independent secretion of biliary lipids. The livers were isolated and saline (0.9% NaCl), or phalloidin dissolved in saline, was added to the perfusion fluid after 1 h of liver isolation. The concentration and output of cholesterol was significantly decreased in phalloidin-treated livers compared with the controls, whereas there was no significant decrease in phospholipids; the secretion of cholesterol and phospholipids can thus be uncoupled from each other by the action of phalloidin. These experiments suggest that a proportion of cholesterol gets into bile independently of bile salts and phospholipids. These findings are discussed in relation to the supersaturation of some biles with cholesterol and its relationship to the bile-salt-independent fraction of cholesterol.


1986 ◽  
Vol 64 (10) ◽  
pp. 1316-1320 ◽  
Author(s):  
S. M. Strasberg ◽  
R. G. Ilson ◽  
C. E. Bear

Bile salt dependent flow and electrolyte secretion in response to two bile salts were studied in awake rabbits. It was found that sodium glycodeoxycholate had a much greater choleretic and cholioneretic efficiency than sodium taurocholate. The effect of the bile salts on flow and electrolyte secretion was not linear across the range of bile salt secretion rates studied. When amiloride was administered significant decreases in choleretic and cholioneretic efficiencies occurred, but furosemide had no effect. It is concluded that bile salts stimulate electrolyte transport via amiloride inhibitable cellular processes, and that this electrolyte transport is in part responsible for bile salt dependent bile flow.


1984 ◽  
Vol 246 (1) ◽  
pp. G67-G71
Author(s):  
E. R. O'Maille ◽  
S. V. Kozmary ◽  
A. F. Hofmann ◽  
D. Gurantz

The effects of norcholate (a C23 bile acid that differs from cholate in having a side chain containing four rather than five carbon atoms) on bile flow and biliary lipid secretion were compared with those of cholate, using the anesthetized rat with a bile fistula. Norcholate and cholate were infused intravenously over the range of 0.6-6.0 mumol X min-1 X kg-1. Both bile acids were quantitatively secreted into bile; norcholate was secreted predominantly in unconjugated form in contrast to cholate, which was secreted predominantly as its taurine or glycine conjugates. The increase in bile flow per unit increase in bile acid secretion induced by norcholate infusion [17 +/- 3.2 (SD) microliters/mumol, n = 8] was much greater than that induced by cholate infusion (8.6 +/- 0.9 microliters/mumol, n = 9) (P less than 0.001). Both bile acids induced phospholipid and cholesterol secretion. For an increase in bile acid secretion (above control values) of 1 mumol X min-1 X kg-1, the increases in phospholipid secretion [0.052 +/- 0.024 (SD) mumol X min-1 X kg-1, n = 9] and cholesterol secretion (0.0071 +/- 0.0033 mumol X min-1 X kg-1, n = 9) induced by norcholate infusion were much less than those induced by cholate infusion (0.197 +/- 0.05 mumol X min-1 X kg-1, n = 9, and 0.024 +/- 0.011 mumol X min-1 X kg-1, n = 9, respectively; P less than 0.001 for both phospholipid and cholesterol). The strikingly different effects of norcholate on bile flow and biliary lipid secretion were attributed mainly to its possessing a considerably higher critical micellar concentration than cholate.


2009 ◽  
Vol 297 (3) ◽  
pp. G520-G531 ◽  
Author(s):  
S. Lukovac ◽  
E. L. Los ◽  
F. Stellaard ◽  
E. H. H. M. Rings ◽  
H. J. Verkade

Essential fatty acid (EFA) deficiency in mice has been associated with increased bile production, which is mainly determined by the enterohepatic circulation (EHC) of bile salts. To establish the mechanism underlying the increased bile production, we characterized in detail the EHC of bile salts in EFA-deficient mice using stable isotope technique, without interrupting the normal EHC. Farnesoid X receptor (FXR) has been proposed as an important regulator of bile salt synthesis and homeostasis. In Fxr −/− mice we additionally investigated to what extent alterations in bile production during EFA deficiency were FXR dependent. Furthermore, we tested in differentiating Caco-2 cells the effects of EFA deficiency on expression of FXR-target genes relevant for feedback regulation of bile salt synthesis. EFA deficiency-enhanced bile flow and biliary bile salt secretion were associated with elevated bile salt pool size and synthesis rate (+146 and +42%, respectively, P < 0.05), despite increased ileal bile salt reabsorption (+228%, P < 0.05). Cyp7a1 mRNA expression was unaffected in EFA-deficient mice. However, ileal mRNA expression of Fgf15 (inhibitor of bile salt synthesis) was significantly reduced, in agreement with absent inhibition of the hepatic bile salt synthesis. Bile flow and biliary secretion were enhanced to the same extent in EFA-deficient wild-type and Fxr −/− mice, indicating contribution of other factors besides FXR in regulation of EHC during EFA deficiency. In vitro experiments show reduced induction of mRNA expression of relevant genes upon chenodeoxycholic acid and a selective FXR agonist GW4064 stimulation in EFA-deficient Caco-2 cells. In conclusion, our data indicate that EFA deficiency is associated with interrupted negative feedback of bile salt synthesis, possibly because of reduced ileal Fgf15 expression.


1992 ◽  
Vol 283 (2) ◽  
pp. 575-581 ◽  
Author(s):  
Y Hamada ◽  
A Karjalainen ◽  
B A Setchell ◽  
J E Millard ◽  
F L Bygrave

The effects were investigated of the choleretic bile salt glycoursodeoxycholate (G-UDCA) and of the cholestatic bile salt taurochenodeoxycholate (T-CDCA) on changes in perfusate Ca2+, glucose and oxygen and in bile calcium and bile flow induced by the administration of (a) vasopressin, (b) glucagon and (c) glucagon plus vasopressin together to the perfused rat liver [Hamada, Karjalainen, Setchell, Millard & Bygrave (1992) Biochem. J. 281, 387-392]. G-UDCA itself increased the secretion of calcium in the bile several-fold, but its principal effect was to augment each of the above-mentioned metabolic events except glucose and oxygen output; particularly noteworthy was its ability to augment the ‘transients’ in bile calcium and bile flow seen immediately after the administration of vasopressin with or without glucagon. T-CDCA, by contrast, produced opposite effects and attenuated all of the parameters measured, and in particular the transients in bile calcium and bile flow. The data provide evidence of a strong correlation between calcium fluxes occurring on both the sinusoidal and the bile-canalicular membranes and that all are modifiable by glucagon, Ca(2+)-mobilizing hormones and bile salts.


1986 ◽  
Vol 234 (2) ◽  
pp. 421-427 ◽  
Author(s):  
K Rahman ◽  
T G Hammond ◽  
P J Lowe ◽  
S G Barnwell ◽  
B Clark ◽  
...  

A major determinant of biliary lipid secretion is bile-salt secretion. Taurocholate (TC), a micelle-forming bile salt, was infused continuously at different rates in both isolated perfused livers and biliary-fistula rats. In both of these systems, infusion of TC brought about an elevated secretion of phosphatidylcholine for the duration of the TC infusion period. Initial phospholipid/bile-salt ratios in the bile were higher in the whole-animal model than in isolated livers, but at the higher infusion rates both secreted approx. 6 mol of phospholipid for every 100 mol of bile salt. The secretion of phospholipid, which was maintained even at high rates of bile-salt infusion, suggest a continuous and regulated phospholipid supply and secretion mechanism. In contrast, however, multiple short pulses of TC to the perfused liver, which brought about relatively equal biliary bile-salt output pulses, did not bring about equal phospholipid outputs, since the phospholipid peak size declined with each bile-salt pulse. These experiments taken together suggest either that a threshold (intracellular) bile-salt concentration may be required to ‘switch-on’ the phospholipid supply and that it may need to be maintained for continuous biliary phospholipid supply to the canalicular membrane.


1981 ◽  
Vol 240 (1) ◽  
pp. G85-G89
Author(s):  
E. A. Shafter ◽  
R. M. Preshaw

The effect of sulfobromophthalein (BSP) on biliary lipid secretion was investigated in 12 cholecystectomized subjects, using a duodenal marker-perfusion technique. A 1-h basal period was followed by intravenous BSP infusion over 3 h, achieving the maximal excretory rate (Tm). The calculated Tm was not different from the measured maximal output. At BSP Tm, bile salt secretion was unchanged, but phospholipid, cholesterol, and bilirubin secretion were markedly reduced. Biliary lipid composition changed accordingly, higher molar percent bile salts but lower phospholipid and cholesterol. In six cholecystectomized dogs with chronic duodenal fistulas, bile was collected directly from the common duct while bile salt secretion was maintained by intravenous taurocholic acid infusion. After a 2-h control period, sufficient BSP was added to create either maximal (Tm) or submaximal conditions. BSP did not alter bile salt secretion but caused a dose-related decrease in phospholipid and cholesterol secretion. Bilirubin excretion was also reduced, whereas bile flow increased. Thus, BSP is hydrocholeretic but decreases phospholipid, cholesterol, and bilirubin secretion in both humans and dogs. The effect on biliary lipid composition is probably through a physical interaction with biliary micelles.


Sign in / Sign up

Export Citation Format

Share Document