salt secretion
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 17)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Tanja Karl

<p>Soil salinity is a major threat to future food stability. Almost 20% of irrigated land is currently too saline to grow traditional crops. Moreover, rising sea levels, scarcity of fresh water, and more intense and prolonged periods of drought are exacerbating the problem. Saline soils severely reduce yields of most crop plants. By contrast, halophytes, which naturally thrive on saline substrates, have a variety of mechanisms to tolerate both the osmotic and cytotoxic components of salt stress. There has been concerted scientific effort worldwide to understand these mechanisms, and to introduce genes that may increase salinity tolerance in crop plants. Many halophytes in the Caryophyllales are pigmented red owing to a tyrosine-derived alkaloid called betacyanin. Recent studies using Disphyma australe, a succulent halophyte common on coastal dunes and rocky outcrops throughout New Zealand, have indicated a role for betacyanins in salinity tolerance. This thesis focuses on how the mechanism through which betacyanins might affect salt tolerance mechanisms in D. australe and whether the putative benefits of betacyanins on salt tolerance might be transferred to naturally non-betacyanic plants. Effects of betacyanin on Na+ distribution in salt-stressed leaves of red and green morphs of D. australe were studied using fluorescence microscopy, cryo-scanning electron microscopy with energy dispersive X-ray analysis, and atomic absorption spectrometry (AAS). In betacyanic leaves Na+ accumulated in the epidermis, while in green leaves Na+ was distributed more evenly across the epidermis and mesophyll. Both leaf types had similar numbers of salt glands, but salt secretion rates were higher in red than in green leaves. Betacyanic leaves under salt stress were able to maintain relatively high K+/ Na+ ratios, essential for many metabolic processes, while the leaves of green plants were not. Leaf sections stained with fluorescein diacetate and propidium iodide showed that mesophyll viability decreased significantly in green leaves under salt stress, while there was almost no decrease in mesophyll viability in the presence of betacyanins. Thus, betacyanic leaves might protect the photosynthetically active mesophyll from cytotoxic effects of Na+ by accumulating Na+ in the epidermis instead of the mesophyll. This in turn leads to more efficient salt secretion and higher K+/ Na+ ratios in the mesophyll, resulting in increased mesophyll viability under salt stress. Effects of high apoplastic sodium concentrations on ion flux kinetics in mesophyll tissue was studied using the non-invasive microelectrode ion flux estimation technique. Mesophyll cells of both betacyanic and green leaves showed a highly unusual K+ flux response; most crop plants leak K+ out of cells upon salt stress, but D. australe and the native Australian Disphyma crassifolium both showed K+ influx upon salt stress. Actively taking up K+ from the apoplast to maintain a high cytosolic K+/ Na+ ratio during salt stress might be an entirely new mechanism to combat the cytotoxic stress component of salinity stress in these halophytes. The salt induced K+ uptake was dependent on the presence of Cl- and Cl- was also taken up into mesophyll cells upon salt stress. Taking up both cations and anions at the same time could avoid membrane depolarisation. Voltage-gated channels, which are involved in the salt induced K+ efflux in glycophytes, would not be activated and this could be a new mechanism to avoid a K+ leak during salt stress. To test whether the beneficial effect of betacyanin production on salt tolerance could be transferred to naturally non-betacyanic plants, transgenic betacyanin-over-expression (BtOE) mutants of Nicotiana tabacum were generated by our colleagues at Plant & Food Research Ltd. Betacyanins in leaf discs of N. tabacum were associated with decreased chlorophyll degradation upon high light and high salt stress. Additionally, the decline in maximum quantum efficiency of PSII after high light and salt treatment was significantly greater in green than in betacyanic leaves. Placing a polycarbonate filter with a similar absorption spectrum to betacyanin over green N. tabacum leaf discs had a similar effect to the presence of betacyanin. Thus, betacyanins probably have a photoprotective effect in N. tabacum, which is essential as both high light and salinity can impair photosynthesis. To assess if the salt tolerance enhancing effect of betacyanin production observed in the leaf discs also occurs in whole N. tabacum plants, the ability to recover from exposure to saturating light was assessed. Betacyanic plants were able to fully recover quicker after exposure to saturation light than green leaves. This research shows that the presence of betacyanins during salt stress correlates with an altered Na+ distribution in leaf tissues and a higher salt secretion rate, which contributed to higher mesophyll viability. Moreover, a completely new ion flux response to salt stress was observed in D. australe and D. crassifolium. The observed salt induced K+ uptake into the mesophyll cells during salt stress might be an entirely new mechanism, to maintain a high K+/ Na+ ratio in the cytosol and avoid the cytotoxic effects of Na+ in photosynthetically active tissue. The beneficial effects of betacyanins could also be transferred to non-betacyanic species, by introducing betacyanin production. These results strongly suggest that betacyanins play a role in salt tolerance in halophytes and might be a valuable resource in increasing the salt tolerance of naturally non-betacyanic crop plants.</p>


2021 ◽  
Author(s):  
◽  
Tanja Karl

<p>Soil salinity is a major threat to future food stability. Almost 20% of irrigated land is currently too saline to grow traditional crops. Moreover, rising sea levels, scarcity of fresh water, and more intense and prolonged periods of drought are exacerbating the problem. Saline soils severely reduce yields of most crop plants. By contrast, halophytes, which naturally thrive on saline substrates, have a variety of mechanisms to tolerate both the osmotic and cytotoxic components of salt stress. There has been concerted scientific effort worldwide to understand these mechanisms, and to introduce genes that may increase salinity tolerance in crop plants. Many halophytes in the Caryophyllales are pigmented red owing to a tyrosine-derived alkaloid called betacyanin. Recent studies using Disphyma australe, a succulent halophyte common on coastal dunes and rocky outcrops throughout New Zealand, have indicated a role for betacyanins in salinity tolerance. This thesis focuses on how the mechanism through which betacyanins might affect salt tolerance mechanisms in D. australe and whether the putative benefits of betacyanins on salt tolerance might be transferred to naturally non-betacyanic plants. Effects of betacyanin on Na+ distribution in salt-stressed leaves of red and green morphs of D. australe were studied using fluorescence microscopy, cryo-scanning electron microscopy with energy dispersive X-ray analysis, and atomic absorption spectrometry (AAS). In betacyanic leaves Na+ accumulated in the epidermis, while in green leaves Na+ was distributed more evenly across the epidermis and mesophyll. Both leaf types had similar numbers of salt glands, but salt secretion rates were higher in red than in green leaves. Betacyanic leaves under salt stress were able to maintain relatively high K+/ Na+ ratios, essential for many metabolic processes, while the leaves of green plants were not. Leaf sections stained with fluorescein diacetate and propidium iodide showed that mesophyll viability decreased significantly in green leaves under salt stress, while there was almost no decrease in mesophyll viability in the presence of betacyanins. Thus, betacyanic leaves might protect the photosynthetically active mesophyll from cytotoxic effects of Na+ by accumulating Na+ in the epidermis instead of the mesophyll. This in turn leads to more efficient salt secretion and higher K+/ Na+ ratios in the mesophyll, resulting in increased mesophyll viability under salt stress. Effects of high apoplastic sodium concentrations on ion flux kinetics in mesophyll tissue was studied using the non-invasive microelectrode ion flux estimation technique. Mesophyll cells of both betacyanic and green leaves showed a highly unusual K+ flux response; most crop plants leak K+ out of cells upon salt stress, but D. australe and the native Australian Disphyma crassifolium both showed K+ influx upon salt stress. Actively taking up K+ from the apoplast to maintain a high cytosolic K+/ Na+ ratio during salt stress might be an entirely new mechanism to combat the cytotoxic stress component of salinity stress in these halophytes. The salt induced K+ uptake was dependent on the presence of Cl- and Cl- was also taken up into mesophyll cells upon salt stress. Taking up both cations and anions at the same time could avoid membrane depolarisation. Voltage-gated channels, which are involved in the salt induced K+ efflux in glycophytes, would not be activated and this could be a new mechanism to avoid a K+ leak during salt stress. To test whether the beneficial effect of betacyanin production on salt tolerance could be transferred to naturally non-betacyanic plants, transgenic betacyanin-over-expression (BtOE) mutants of Nicotiana tabacum were generated by our colleagues at Plant & Food Research Ltd. Betacyanins in leaf discs of N. tabacum were associated with decreased chlorophyll degradation upon high light and high salt stress. Additionally, the decline in maximum quantum efficiency of PSII after high light and salt treatment was significantly greater in green than in betacyanic leaves. Placing a polycarbonate filter with a similar absorption spectrum to betacyanin over green N. tabacum leaf discs had a similar effect to the presence of betacyanin. Thus, betacyanins probably have a photoprotective effect in N. tabacum, which is essential as both high light and salinity can impair photosynthesis. To assess if the salt tolerance enhancing effect of betacyanin production observed in the leaf discs also occurs in whole N. tabacum plants, the ability to recover from exposure to saturating light was assessed. Betacyanic plants were able to fully recover quicker after exposure to saturation light than green leaves. This research shows that the presence of betacyanins during salt stress correlates with an altered Na+ distribution in leaf tissues and a higher salt secretion rate, which contributed to higher mesophyll viability. Moreover, a completely new ion flux response to salt stress was observed in D. australe and D. crassifolium. The observed salt induced K+ uptake into the mesophyll cells during salt stress might be an entirely new mechanism, to maintain a high K+/ Na+ ratio in the cytosol and avoid the cytotoxic effects of Na+ in photosynthetically active tissue. The beneficial effects of betacyanins could also be transferred to non-betacyanic species, by introducing betacyanin production. These results strongly suggest that betacyanins play a role in salt tolerance in halophytes and might be a valuable resource in increasing the salt tolerance of naturally non-betacyanic crop plants.</p>


2021 ◽  
Author(s):  
changshun wang ◽  
huiqing wang ◽  
wei wang ◽  
cunzhu liang ◽  
huamin liu ◽  
...  

Abstract Background: The aim of this study was to identify and explore the community formation mechanism of R. soongarica in the eastern Mongolian Plateau grassland. The experimental site was located in an ancient lake basin with saline soil in a desert steppe. Results: Soil conductivity of R. soongarica was significantly higher than that of the two herbs, S. glareosa and A. polyrhizum, at all soil depths (P ≤ 0.001). The daily salt secretion rate ranged from 1% to 2% of the fresh leaf weight in the different communities and increased with increased soil conductivity. With increased canopy size of R. soongarica, the distance between the shrubs and herbs also increased. The correlation between the R. soongarica canopy diameter and the distance to the nearest S. glareosa (R2 = 0.4065; P < 0.05) was higher than that to the nearest A. polyrhizum (R2 = 0.1256; P < 0.05). The growth of the three species was not salt-dependent; however, R. soongarica was significantly more salt-tolerant than the two herbs. The two herbs significantly limited the growth of R. soongarica seedlings at low soil conductivity (≤ 600 µS/cm), but not at high soil conductivity (≥ 1000 µS/cm). Conclusions: Salt secretion by R. soongarica leaves results in the formation of a “saline island,” which leads to soil conductivity increasing significantly under the canopy of R. soongarica. This increase in soil conductivity of the saline island effectively reduces the interspecies competition advantage of the two herbs. This highlights the competitiveness of R. soongarica in salt-stressed environments and facilitates the establishment of this desert shrub in saline regions on the desert steppe.


Author(s):  
Tabassum Hussain ◽  
Jingsong Li ◽  
Xiaohui Feng ◽  
Hina Asrar ◽  
Bilquees Gul ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 2203 ◽  
Author(s):  
Chaoxia Lu ◽  
Fang Yuan ◽  
Jianrong Guo ◽  
Guoliang Han ◽  
Chengfeng Wang ◽  
...  

Soil salinization is a serious and growing problem around the world. Some plants, recognized as the recretohalophytes, can normally grow on saline–alkali soil without adverse effects by secreting excessive salt out of the body. The elucidation of the salt secretion process is of great significance for understanding the salt tolerance mechanism adopted by the recretohalophytes. Between the 1950s and the 1970s, three hypotheses, including the osmotic potential hypothesis, the transfer system similar to liquid flow in animals, and vesicle-mediated exocytosis, were proposed to explain the salt secretion process of plant salt glands. More recently, increasing evidence has indicated that vesicular transport plays vital roles in salt secretion of recretohalophytes. Here, we summarize recent findings, especially regarding the molecular evidence on the functional roles of vesicular trafficking in the salt secretion process of plant salt glands. A model of salt secretion in salt gland is also proposed.


2021 ◽  
Author(s):  
Gonasageran Naidoo ◽  
Krishnaveni Naidoo

Abstract The effects of salinity (10 and 50% seawater) and oil in combination on three mangroves, Avicennia marina, Bruguiera gymnorrhiza and Rhizophora mucronata were determined. In all species, plant height, number of leaves and CO2 exchange were generally higher in 10% than in 50% seawater. Salinity and oil decreased plant height, number of leaves, chlorophyll content and CO2 exchange, with reductions being greater at the higher salinity. In a second experiment, the effects of salinity (0, 10 and 50% seawater) and oil on concentrations of ions, polycyclic aromatic hydrocarbons (PAHs), leaf ultrastructure and salt secretion in A. marina were investigated. Salinity and oil in combination increased concentrations of Na+ but decreased those of K+, Ca²+ and Mg²+. PAHs damaged cell membranes, disrupted ion concentrations and reduced salt secretion. This study demonstrated that increase in salinity reduces growth of mangroves and that salinity and oiling in combination exacerbate growth reduction. In A. marina, oil was absorbed and translocated to the leaves where it disrupted membranes, ion accumulation and salt secretion.


2020 ◽  
Author(s):  
Xiao Feng ◽  
Guohong Li ◽  
Shaohua Xu ◽  
Weihong Wu ◽  
Qipian Chen ◽  
...  

AbstractMangroves have colonized extreme intertidal environments characterized by high salinity, hypoxia, and other abiotic stresses. During millions of years of evolution, mangroves have adapted to these habitats, evolving a series of highly specialized traits. Aegiceras corniculatum, a pioneer mangrove species that evolved salt secretion and crypto-vivipary, is an attractive ecological model to investigate molecular mechanisms underlying adaptation to intertidal environments. Here we report a high-quality reference genome of A. corniculatum using the PacBio SMRT sequencing technology, comprising 827 Megabases (Mb) and containing 32,092 protein-coding genes. The longest scaffold and N50 for the assembled genome are 13.76 Mb and 3.87 Mb. Comparative and evolutionary analyses revealed that A. corniculatum experienced a whole-genome duplication (WGD) event around 35 million years ago after the divergence between Aegiceras and Primula. We inferred that maintenance of cellular environmental homeostasis is an important adaptive process in A. corniculatum. The 14-3-3 protein-coding genes were retained after the recent WGD event, decoding a calcium signal to regulate Na+ homeostasis. A. corniculatum has more H+-ATPase coding genes, essential for the maintenance of low Na+ concentration in the cells, than its relatives. Photosynthesis and oxidative-phosphorylation pathways are overrepresented among significantly expanded gene families and might supply the energy needed for salt secretion. Genes involved in natural antioxidant biosynthesis, contributing to scavenging reactive oxygen species against high salinity, have also increased in copy number. We also found that all homologs of DELAY OF GERMINATION1 (DOG1), a pivotal regulator of seed dormancy, lost their heme-binding ability in A. corniculatum. This loss may contribute to crypto-vivipary. Our study provides a valuable resource to investigate molecular adaptation to extreme environments in mangroves.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Junpeng Li ◽  
Fang Yuan ◽  
Yanlu Liu ◽  
Mingjing Zhang ◽  
Yun Liu ◽  
...  

Abstract Background Salt, a common environmental stress factor, inhibits plant growth and reduces yields. Melatonin is a pleiotropic molecule that regulates plant growth and can alleviate environmental stress in plants. All previous research on this topic has focused on the use of melatonin to improve the relatively low salt tolerance of glycophytes by promoting growth and enhancing antioxidant ability. It is unclear whether exogenous melatonin can increase the salt tolerance of halophytes, particularly recretohalophytes, by enhancing salt secretion from the salt glands. Results To examine the mechanisms of melatonin-mediated salt tolerance, we explored the effects of exogenous applications of melatonin on the secretion of salt from the salt glands of Limonium bicolor (a kind of recretohalophyte) seedlings and on the expression of associated genes. A pretreatment with 5 μM melatonin significantly improved the growth of L. bicolor seedlings under 300 mM NaCl. Furthermore, exogenous melatonin significantly increased the dry weight and endogenous melatonin content of L. bicolor. In addition, this treatment reduced the content of Na+ and Cl− in leaves, but increased the K+ content. Both the salt secretion rate of the salt glands and the expression level of genes encoding ion transporters (LbHTK1, LbSOS1, LbPMA, and LbNHX1) and vesicular transport proteins (LbVAMP721, LbVAP27, and LbVAMP12) were significantly increased by exogenous melatonin treatment. These results indicate that melatonin improves the salt tolerance of the recretohalophyte L. bicolor via the upregulation of salt secretion by the salt glands. Conclusions Our results showed that melatonin can upregulate the expression of genes encoding ion transporters and vesicle transport proteins to enhance salt secretion from the salt glands. Combining the results of the current study with previous research, we formulated a novel mechanism by which melatonin increases salt secretion in L. bicolor. Ions in mesophyll cells are transported to the salt glands through ion transporters located at the plasma membrane. After the ions enter the salt glands, they are transported to the collecting chamber adjacent to the secretory pore through vesicle transport and ions transporter and then are secreted from the secretory pore of salt glands, which maintain ionic homeostasis in the cells and alleviate NaCl-induced growth inhibition.


2020 ◽  
Author(s):  
Junpeng Li ◽  
Fang Yuan ◽  
Yanlu Liu ◽  
Mingjing Zhang ◽  
Yun Liu ◽  
...  

Abstract Background: Salt stress inhibits plant growth and reduces yields. Melatonin is a pleiotropic molecule and can regulate plant growth and alleviate environmental stress in plants. Previous research has focused on the use of melatonin to improve the relatively low salt tolerance of glycophytes by promoting growth and enhancing antioxidant ability. It is unclear whether exogenous melatonin can increase the salt tolerance of halophytes, particularly recretohalophytes, by enhancing salt secretion from the salt glands. Results: We explored the effects of exogenous applications of melatonin on the secretion of salt from the salt glands of Limonium bicolor (a kind of recretohalophyte) seedlings and on the expression of associated genes. 5 μM exogenous melatonin significantly improved the growth of L. bicolor seedlings under 300 mM NaCl. Furthermore, exogenous melatonin significantly increased the dry weight and endogenous melatonin content of L. bicolor . In addition, this treatment reduced the content of Na + and Cl – in leaves, but increased the K + content. Both the salt secretion rate of the salt glands and the expression level of genes encoding ion transporters and vesicular transport proteins were significantly increased by exogenous melatonin treatment. These results indicate that melatonin improves the salt tolerance of the recretohalophyte L. bicolor via the upregulation of salt secretion by the salt glands. Conclusions: Our results showed that melatonin can upregulate the expression of genes encoding ion transporters and vesicle transport proteins to enhance salt secretion from the salt glands. Combining the results of the current study with previous research, we formulated a novel mechanism by which melatonin increases salt secretion in L. bicolor . Ions in mesophyll cells are transported to the salt glands through ion transporters located at the plasma membrane. After the ions enter the salt glands, they are transported to the collecting chamber adjacent to the secretory pore through vesicle transport and ions transporter and then are secreted from the secretory pore of salt glands, which maintain ionic homeostasis in the cells and alleviate NaCl-induced growth inhibition.


2020 ◽  
Author(s):  
Junpeng Li ◽  
Fang Yuan ◽  
Yanlu Liu ◽  
Mingjing Zhang ◽  
Yun Liu ◽  
...  

Abstract Background: Salt, a common environmental stress factor, inhibits plant growth and reduces yields. Melatonin is a pleiotropic molecule that regulates plant growth and can alleviate environmental stress in plants. All previous research on this topic has focused on the use of melatonin to improve the relatively low salt tolerance of glycophytes by promoting growth and enhancing antioxidant ability. It is unclear whether exogenous melatonin can increase the salt tolerance of halophytes, particularly recretohalophytes, by enhancing salt secretion from the salt glands. Results: To examine the mechanisms of melatonin-mediated salt tolerance, we explored the effects of exogenous applications of melatonin on the secretion of salt from the salt glands of Limonium bicolor (a kind of recretohalophyte) seedlings and on the expression of associated genes. A pretreatment with 5 μM melatonin significantly improved the growth of L. bicolor seedlings under 300 mM NaCl. Furthermore, exogenous melatonin significantly increased the dry weight and endogenous melatonin content of L. bicolor. In addition, this treatment reduced the content of Na+ and Cl– in leaves, but increased the K+ content. Both the salt secretion rate of the salt glands and the expression level of genes encoding ion transporters (LbHTK1, LbSOS1, LbPMA, and LbNHX1) and vesicular transport proteins (LbVAMP721, LbVAP27, and LbVAMP12) were significantly increased by exogenous melatonin treatment. These results indicate that melatonin improves the salt tolerance of the recretohalophyte L. bicolor via the upregulation of salt secretion by the salt glands.Conclusions: Our results showed that melatonin can upregulate the expression of genes encoding ion transporters and vesicle transport proteins to enhance salt secretion from the salt glands. Combining the results of the current study with previous research, we formulated a novel mechanism by which melatonin increases salt secretion in L. bicolor. Ions in mesophyll cells are transported to the salt glands through ion transporters located at the plasma membrane. After the ions enter the salt glands, they are transported to the collecting chamber adjacent to the secretory pore through vesicle transport and ions transporter and then are secreted from the secretory pore of salt glands, which maintain ionic homeostasis in the cells and alleviate NaCl-induced growth inhibition.


Sign in / Sign up

Export Citation Format

Share Document