Antihypertensive Effect of Prolonged Blockade of Angiotensin Formation in Benign and Malignant, one- and two-Kidney Goldblatt Hypertensive Rats

1979 ◽  
Vol 57 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. G. Bengis ◽  
T. G. Coleman

1. The effect of chronic inhibition of angiotensin II formation was investigated in four groups of hypertensive rats. Benign hypertension was produced by placing a 0·25 mm-diameter silver clip on the renal artery; a 0·20 mm clip was used to create malignant hypertension. A two-kidney model had a clip plus intact contralateral kidney and a one-kidney model had a clip plus contralateral nephrectomy. Benign and malignant groups were prepared in both the one-kidney and two-kidney variations. Converting enzyme inhibitor (SQ 14.225) was given to these four groups for 1 week in drinking water and average intake ranged from 33 to 77 mg/day. 2. The two malignant groups had the highest plasma renin activities and they showed a precipitous fall in arterial pressure in the first 24 h of inhibition of angiotensin formation. All groups showed an additional slow decline in pressure during the remaining 6 days of inhibition. Changes in heart rate and sodium excretion were variable but, in general, heart rate decreased during inhibition. 3. Arterial pressure did not become normal with inhibition in either of the one-kidney models: decreases to 126 and 132 mmHg were observed in the benign and malignant groups respectively. Three of the malignant one-kidney animals became uraemic with inhibition and one died before inhibition was discontinued. 4. Arterial pressure was reduced to normal pressure (95 mmHg) after 1 week of inhibition in both the benign and malignant two-kidney models. 5. It appears that normal pressure was restored in the two-kidney model but not in the one-kidney model because of the presence of the intact contralateral kidney. The physiological basis for this difference is not known but changes in renal excretory function may be involved.

1982 ◽  
Vol 63 (s8) ◽  
pp. 211s-213s
Author(s):  
Yutaka Takata ◽  
Austin E. Doyle ◽  
Margherita Veroni ◽  
Stuart G. Duffy

1. The aim of this study was to determine whether the urinary excretory function of the contralateral kidney is essential for angiotensin dependency in two-kidney, one-clip renal hypertensive rats. Ureteric ligation was used to abolish excretion from the contralateral kidney. 2. Plasma renin activity (PRA), renal renin content (RRC) and the response of blood pressure to captopril were examined. 3. The increase of blood pressure produced by the application of a clip to one renal artery was slightly accelerated by the ureteral ligation of the contralateral kidney. 4. Ureteral ligation of the contralateral kidney did not alter the response to a single oral administration of captopril. PRA and RRC of both kidneys were not different between the ureteral ligated group and the group without ureteric ligation. The falls in blood pressure produced by captopril correlated with PRA in the two groups. 5. These results suggest that the excretory function of the contralateral kidney is not essential for angiotensin dependency in the two-kidney, one-clip hypertensive rat model.


1998 ◽  
Vol 275 (1) ◽  
pp. H322-H329 ◽  
Author(s):  
Kelly P. McKeown ◽  
Artin A. Shoukas

We have developed a chronic technique to isolate the carotid sinus baroreceptor region in the conscious rat model. Our technique, when used in conjunction with other methods, allows for the study of the control of arterial pressure, heart rate, and cardiac output by the carotid sinus baroreceptor reflex in conscious, unrestrained rats. The performance of our technique was evaluated in two strains: normotensive Sprague-Dawley (SD) rats and spontaneously hypertensive rats (SHR). Each rat was instrumented with an aortic flow probe and a catheter placed in the right femoral artery to monitor cardiac output and arterial pressure, respectively. The cervical sympathetic trunk and aortic depressor nerve were ligated and cut bilaterally, leaving vagus nerves intact. The right and left carotid sinuses were isolated using our new technique. We tested the open-loop function of the carotid sinus baroreceptor reflex system in the conscious rat after recovery from the isolation surgery. We found that changes in nonpulsatile carotid sinus pressure caused significant changes in arterial pressure, heart rate, and total peripheral resistance in both rat strains. However, the cardiac output responses differed dramatically between strains. Significant changes were seen in the cardiac output response of SHR, whereas no significant changes were observed in normotensive SD rats. We have found this technique to be a highly reliable tool for the study of the carotid sinus baroreceptor reflex system in the conscious rat.


1983 ◽  
Vol 64 (5) ◽  
pp. 463-470
Author(s):  
Y. Takata ◽  
A. E. Doyle ◽  
M. Veroni ◽  
S. G. Duffy

1. Blood pressure, the hypotensive effect of captopril, plasma renin activity, renal renin content and kidney weight were measured in the two-kidney—one-clip model, the one-kidney—one-clip model and the two-kidney—one-clip model with the ureter of the contralateral kidney ligated in rats. The ureteric ligation was performed to abolish urinary excretion from the contralateral kidney in the two-kidney—one-clip model. 2. The development of hypertension after renal artery constriction was earlier and greater in the one-kidney—one-clip model and the two-kidney—one-clip model with ureter of the contralateral kidney ligated than in the two-kidney—one-clip model. A single oral dose of captopril produced a greater fall in blood pressure in both the two-kidney models than in the one-kidney—one-clip group. 3. Plasma renin activity and renal renin content of the clipped kidney were higher in the two-kidney model rats, whether or not the ureter had been ligated, than in the one-kidney—one-clip model animals, although more than half the rats from the two-kidney model had normal values. There was a significant correlation between plasma renin activity and the response to captopril in all groups, whereas in none of the three groups was the correlation between plasma renin activity and blood pressure significant. 4. The clipped kidney had a higher renin content than did the contralateral kidney, and the weight of the ischaemic kidney was decreased compared with the contralateral kidney whether it was untouched or had its ureter ligated. The weight of the clipped kidney was in the order one-kidney—one-clip model > two-kidney—one-clip model with ureter of the contralateral kidney ligated > two-kidney—one-clip model. 5. It was concluded that the renin-angiotensin system was stimulated to the similar degree in some animals for the two-kidney—one-clip models, whether or not the ureter of the contralateral kidney had been ligated, compared with the one-kidney—one-clip animals. This finding suggests that the contralateral kidney can stimulate renin secretion and synthesis in the clipped kidney independently of Na+ excretion.


1996 ◽  
Vol 90 (4) ◽  
pp. 287-293 ◽  
Author(s):  
Marta Weinstock ◽  
Elena Gorodetsky ◽  
Ronald Kalman

1. Rabbits with a genetic impairment in baroreflex control of heart rate become hypertensive on a high salt diet. The present study determined the effect of bilateral renal denervation on blood pressure and sodium balance after salt loading (four times normal intake; 28–36 mEq NaCl/day) in normotensive rabbits with high (Group I) and low (Group II) baroreflex sensitivity, respectively. 2. Eight rabbits in each group were denervated or sham-denervated 1 week before commencement of the high salt diet. Before operation, the two groups differed only in the gain of their cardiac baroreflex (Group I, −6.4 ± 0.4 beats min−1 mmHg−1; Group II, −3.2 ± 0.15 beats min−1 mmHg−1). 3. In Group I sham-denervated rabbits, mean arterial pressure remained unchanged, and plasma renin activity and heart rate fell significantly in response to the high salt. In Group II sham-denervated rabbits, mean arterial pressure increased by 10.6 ± 1.2 mmHg, and heart rate and plasma renin activity remained unchanged. Their cumulative Na+ retention and weight gain was more than twice that of Group I sham-denervated rabbits. 4. Renal denervation decreased plasma renin activity in both groups to <1 pmol Ang I h−1 ml−1, lowered cumulative Na+ retention from 102 ± 4 to 35 ± 5 mEq (P<0.01) and completely prevented the increase in mean arterial pressure in response to high salt in Group II. 5. The results suggest that Group II rabbits retain salt and fluid in response to their diet because of an abnormality in their control of renal nerve activity, possibly via vagal afferents. This results in blood pressure elevation because of an inability to lower peripheral resistance and heart rate in response to the increase in cardiac output. 6. Since they display several of the characteristics of salt-sensitive hypertensive humans, i.e. salt retention, normal plasma renin activity, but abnormal regulation of plasma renin activity and blood flow in response to salt loading, Group II are an appropriate model of human salt-induced hypertension.


1998 ◽  
Vol 275 (5) ◽  
pp. H1627-H1634 ◽  
Author(s):  
Margaret P. Chandler ◽  
David W. Rodenbaugh ◽  
Stephen E. DiCarlo

We tested the hypothesis that postexercise reductions in arterial pressure and heart rate (HR) are mediated by a lowering of the operating point and a reduction in the gain of the arterial baroreflex. To test this hypothesis, spontaneous changes in arterial pressure and the reflex responses of HR were examined before and after a single bout of mild to moderate dynamic exercise in 19 spontaneously hypertensive rats (SHR, 10 male and 9 female). Eleven SHR subjected to sinoaortic denervation (SAD) (6 male, 5 female) were also studied. All rats were instrumented with an arterial catheter for the measurement of arterial pressure and HR. After exercise, arterial pressure and HR were reduced below preexercise levels. Furthermore, the operating point and spontaneous gain (G) of the arterial baroreflex were reduced. Specifically, after exercise, the spontaneous range of HR (P1, 50%), the pressure at the midpoint of the pressure range (P3, 13%) and the HR at the midpoint of the HR range (H3, 10%), the spontaneous minimum HR (P4, 8%) and maximum HR (10%), and G (76%) were significantly attenuated. SAD significantly attenuated the relationship between arterial pressure and HR by reducing G (males 94%, females 95%). These results demonstrate that acute exercise resulted in a postexercise resetting of the operating point and a reduction in the gain of the arterial baroreflex. Furthermore, these data suggest that postexercise reductions in arterial pressure and HR are mediated by a lowering of the operating point of the arterial baroreflex.


1962 ◽  
Vol 202 (4) ◽  
pp. 795-799 ◽  
Author(s):  
H. Brunner ◽  
P. A. Desaulles ◽  
D. Regoli ◽  
F. Gross

To determine relationship between kidney renin content and excretory function, rats with renal hypertension induced by unilateral clamping of the renal artery were given an oral load of 3 ml of 0.9% saline/100 g body wt. Excretion of the saline load was accelerated in rats with renal hypertension as well as in animals with hypertension due to overdosage with cortexone and salt, provided that the loading experiment was made 3–4 weeks after hypertension was established, but not when animals had been hypertensive for 11–14 weeks. Renin concentration was markedly reduced in the unclamped kidney and also in the kidney of the rats overdosed with cortexone and salt. Excreting capacity of the clamped kidney was compared with that of the unclamped kidney, after removal or after functional elimination of the contralateral kidney, by ligation of the ureter, 3, 24, and 48 hr after the operation. In all experiments excretion of saline load by the unclamped kidney was more rapid than by the clamped kidney, but the highest values were reached in the presence of a functional clamped kidney. Only in rats with elevated blood pressure was the load more rapidly excreted than in normal rats, but hypertension alone cannot be the only factor responsible, the excretion not being accelerated in unilaterally nephrectomized hypertensive rats. Although these hint at a connection between the renin concentration and renal function the nature of this relationship remains uncertain.


1983 ◽  
Vol 244 (1) ◽  
pp. R74-R77 ◽  
Author(s):  
J. Schwartz ◽  
I. A. Reid

The role of vasopressin in the regulation of blood pressure during water deprivation was assessed in conscious dogs with two antagonists of the vasoconstrictor activity of vasopressin. In water-replete dogs, vasopressin blockade caused no significant changes in mean arterial pressure, heart rate, plasma renin activity (PRA), or plasma corticosteroid concentration. In the same dogs following 48-h water deprivation, vasopressin blockade increased heart rate from 85 +/- 6 to 134 +/- 15 beats/min (P less than 0.0001), increased cardiac output from 2.0 +/- 0.1 to 3.1 +/- 0.1 1/min (P less than 0.005), and decreased total peripheral resistance from 46.6 +/- 3.1 to 26.9 +/- 3.1 U (P less than 0.001). Plasma renin activity increased from 12.4 +/- 2.2 to 25.9 +/- 3.4 ng ANG I X ml-1 X 3 h-1 (P less than 0.0001) and plasma corticosteroid concentration increased from 3.2 +/- 0.7 to 4.9 +/- 1.2 micrograms/dl (P less than 0.05). Mean arterial pressure did not change significantly. When the same dogs were again deprived of water and pretreated with the beta-adrenoceptor antagonist propranolol, the heart rate and PRA responses to the antagonists were attenuated and mean arterial pressure decreased from 103 +/- 2 to 91 +/- 3 mmHg (P less than 0.001). These data demonstrate that vasopressin plays an important role in blood pressure regulation during water deprivation in conscious dogs.


1983 ◽  
Vol 244 (1) ◽  
pp. H97-H101 ◽  
Author(s):  
S. Sen ◽  
R. C. Tarazi

Studies of regression of myocardial hypertrophy in spontaneously hypertensive rats (SHR) suggest that the adrenergic system may play an important role in the reversal of hypertrophy. The effect of propranolol on reversal of hypertrophy, however, is still controversial. This study describes the effect of propranolol, given alone or in combination with hydralazine in different ratios for 4 wk, on blood pressure (BP), ventricular weight, and myocardial catecholamine (MC) concentrations. The data show that a certain ratio of propranolol to hydralazine (750:30) leads to moderate BP control (196-156 mmHg) without increased MC (634 vs. 552 ng/g) and moderately reduced hypertrophy. Reduction of BP alone with increased MC (hydralazine alone) or reduction of MC without BP control (propranolol alone) failed to reduce hypertrophy. A significant correlation between both ventricular weight and heart rate with MC (r = 0.6) was obtained by multiple regression analysis. This study suggests that adrenergic factors seem to play an important role in modulating structural cardiac response to variations in arterial pressure.


1986 ◽  
Vol 64 (3) ◽  
pp. 284-289 ◽  
Author(s):  
Sunil Datar ◽  
William H. Laverty ◽  
J. Robert McNeill

Pressor responses and heart rate responses to intravenous injections (3.5–50.0 pmol/kg) of arginine vasopressin (AVP) were recorded in saline- and clonidine-treated spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. Clonidine (20 μg/kg, i. v.) caused a marked fall of arterial pressure in SHR but not in WKY rats so that, 20 min after the injection of the α2-adrenoceptor agonist, arterial pressure was similar in the two strains of rats. The curve expressing the relationship between the dose of AVP and the increase of arterial pressure for saline-treated SHR was positioned to the left of that for saline-treated WKY rats. This enhanced pressor responsiveness of SHR to AVP may have been related to impaired reflex activity since heart rate fell much less in SHR than in WKY rats for a given elevation in pressure. Pressure responses to AVP were augmented by clonidine in both SHR and WKY rats so that, similar to saline-treated rats, pressor responsiveness to the peptide was still greater in SHR. Heart rate responses to AVP were not altered significantly by clonidine. The results indicate that clonidine fails to enhance reflex activity and reduce pressor responsiveness of SHR to AVP. The increased pressor responsiveness of both SHR and WKY rats to AVP following clonidine was an unexpected finding and may be related to a peripheral interaction between α-adrenergic agonists and AVP.


1984 ◽  
Vol 66 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Robert Fagard ◽  
Anne Cattaert ◽  
Paul Lijnen ◽  
Jan Staessen ◽  
Luc Vanhees ◽  
...  

1. The systemic circulation at rest and during exercise was studied in ten normal male volunteers, after placebo on one occasion and after acute intravenous administration of the serotonergic antagonist ketanserin on another occasion. The effects of ketanserin on the components of the renin—angiotensin—aldosterone system, on plasma catecholamines and on exercise capacity for graded uninterrupted exercise were also investigated. 2. At rest in recumbency rapid intravenous injection of 10 mg of ketanserin, followed by a continuous infusion of 2 mg/h, produced an acute but transient fall in mean intra-arterial pressure of 6 mmHg compared with placebo. After 15 min the mean arterial pressure with ketanserin was within 2 mmHg of the mean pressure with placebo. In the sitting position both at rest and up to 30% of maximal work rate, the mean arterial pressure during ketanserin did not differ from the pressure on placebo. However, at higher levels of physical activity the rise in mean arterial pressure was lower with ketanserin; the pressure achieved with placebo was 7.5 mmHg higher at maximal work rate. Heart rate and cardiac output were significantly higher during ketanserin. 3. When the subjects were lying down and resting, plasma noradrenaline and adrenaline levels, plasma renin activity and angiotensin II concentration were not affected by ketanserin; however, these values were higher in the sitting position both at rest and during exercise. Plasma aldosterone was reduced by ketanserin during exercise and also when the subject was resting in the recumbent position. 4. Exercise capacity as measured by peak oxygen uptake was similar during ketanserin (3.09 ± se 0.12 litres/min) and during placebo (3.11 ± 0.13). 5. The data suggest that 5-hydroxytryptamine can have only a small role, if any, in pressure homoeostasis in sodium replete man at rest in recumbency. At moderate and heavy levels of exercise, the results are compatible with a role for 5-hydroxytryptamine in pressure regulation. Activation of the sympathetic nervous system by ketanserin is suggested by increases of plasma catecholamines, heart rate, cardiac output and plasma renin. The suppression of plasma aldosterone suggests that 5-hydroxytryptamine may have a role in the regulation of aldosterone secretion which is independent of angiotensin II.


Sign in / Sign up

Export Citation Format

Share Document