A Micropuncture Study of Proximal Tubular Function after Acute Hydrochlorothiazide Administration to Brattleboro Rats with Diabetes Insipidus

1979 ◽  
Vol 57 (5) ◽  
pp. 427-434 ◽  
Author(s):  
S. J. Walter ◽  
J. F. Laycock ◽  
D. G. Shirley

1. Renal function in anaesthetized Brattleboro rats with hereditary hypothalamic diabetes insipidus was studied with micropuncture techniques before, and 1–3 h after, a single injection of hydrochlorothiazide. 2. In rats given hydrochlorothiazide and kept in sodium and water balance, total glomerular filtration rate and superficial nephron filtration rate were similar to values in control animals, whereas fractional fluid reabsorption in the proximal tubule (as evidenced by tubular fluid/plasma inulin concentration ratios) was slightly, but significantly, reduced. This suggests that hydrochlorothiazide may have a small direct inhibitory effect on proximal tubular reabsorption. 3. When rats were given hydrochlorothiazide and the resultant extra urinary sodium losses were not replaced, there was a marked antidiuresis. In these animals total glomerular filtration rate was reduced by 23% and superficial nephron filtration rate by 27% when compared with values in control rats. Fractional proximal tubular fluid reabsorption increased significantly whereas absolute proximal fluid reabsorption was unaffected. 4. It is concluded that the reduction in body sodium which follows acute hydrochlorothiazide administration over-rides any inhibitory effect of the drug on proximal tubular reabsorption, and leads instead to an increase in fractional fluid reabsorption at this site. This effect, combined with the fall in glomerular filtration rate, results in a greatly reduced delivery of fluid to the more distal nephron segments, and is probably largely responsible for the observed antidiuresis.

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 83 ◽  
Author(s):  
Jurgen Schnermann ◽  
Mona Oppermann ◽  
Yuning Huang

An increase of glomerular filtration rate (hyperfiltration) is an early functional change associated with type I or type II diabetes mellitus in patients and animal models. The causes underlying glomerular hyperfiltration are not entirely clear. There is evidence from studies in the streptozotocin model of diabetes in rats that an increase of proximal tubular reabsorption results in the withdrawal of a vasoconstrictor input exerted by the tubuloglomerular feedback (TGF) mechanism. In the present study, we have used micropuncture to assess single nephron function in wild type (WT) mice and in two strains of type I diabetic Ins2+/- mice in either a C57Bl/6 (Akita) or an A1AR-/- background (Akita/A1AR-/-) in which TGF is non-functional. Kidney glomerular filtration rate (GFR) of anesthetized mice was increased by 25% in Akita mice and by 52% in Akita/A1AR-/-, but did not differ between genotypes when corrected for kidney weight. Single nephron GFR (SNGFR) measured by end-proximal fluid collections averaged 11.8 ± 1 nl/min (n=17), 13.05 ± 1.1 nl/min (n=23; p=0.27), and 15.4 ± 0.84 nl/min (n=26; p=0.009 compared to WT; p=0.09 compared to Akita) in WT, Akita, and Akita/A1AR-/- mice respectively. Proximal tubular fluid reabsorption was not different between WT and diabetic mice and correlated with SNGFR in all genotypes. We conclude that glomerular hyperfiltration is a primary event in the Akita model of type I diabetes, perhaps driven by an increased filtering surface area, and that it is ameliorated by TGF to the extent that this regulatory system is functional.


1996 ◽  
Vol 91 (3) ◽  
pp. 299-305 ◽  
Author(s):  
D. G. Shirley ◽  
S. J. Walter ◽  
R. J. Unwin

1. The nephron sites involved in the blunted natriuretic response to frusemide during sodium depletion were investigated using micropuncture techniques in anaesthetized rats. 2. Glomerular filtration rate was lower, and fractional sodium reabsorption in the proximal convoluted tubule higher, in sodium-depleted than in sodium-replete rats. Consequently, sodium delivery to the loop of Henle was reduced (by approximately 35%) in the sodium-depleted animals. Intravenous frusemide (2.5 mg h−1 kg−1; urinary water and electrolyte losses replaced) had no effect on glomerular filtration rate or proximal tubular sodium reabsorption in either group. 3. The inhibitory effect of intravenous frusemide on fractional sodium reabsorption in the nephron segments constituting the loop of Henle (measured by free-flow micropuncture) was attenuated during sodium depletion. However, when loops of Henle were microperfused at identical rates with artificial late proximal tubular fluid, no difference in the responses of sodium-depleted and sodium-replete rats to intraluminal frusemide (10−5 mol/l) could be detected. 4. In sodium-replete animals, the increased load of sodium delivered from the loop of Henle during frusemide administration resulted in a lowering of fractional sodium reabsorption in the distal tubule. In contrast, in sodium-depleted rats given frusemide, fractional distal sodium reabsorption tended to increase, so that values in the two groups of frusemide-treated animals were markedly different (0.30 ±0.04 versus 0.51 ±0.03). 5. It is concluded that the blunted natriuretic response to frusemide during sodium depletion results from at least three factors: a reduced sodium delivery to the loop of Henle; a reduced inhibitory effect of frusemide on fractional sodium reabsorption in the loop of Henle, which may be a consequence of the reduced sodium load; and enhanced fractional reabsorption of sodium in the distal tubule, which partially buffers the diuretic-induced increase in sodium delivery from the loop.


1979 ◽  
Vol 237 (1) ◽  
pp. F63-F74 ◽  
Author(s):  
L. C. Moore ◽  
J. Schnermann ◽  
S. Yarimizu

Tubuloglomerular feedback (TGF) mediation of autoregulation was investigated by measuring the response of single nephron glomerular filtration rate (SNGFR) to changes in arterial pressure (AP) following acute or chronic TGF inhibition. In hydropenic rats with intact TGF, distal SNGFR was 25.0 +/- 1.2 (SE) and 23.9 +/- 1.4 nl/min at AP of 111 and 135 mmHg, respectively. In the same 20 nephrons during proximal tubular microinfusion of furosemide, distal SNGFR was 23.6 +/- 1.4 (n = 16) and 29.7 +/- 1.4 nl/min (n = 20) (P less than 0.001, n = 16) at 112 and 133 mmHg. When determined proximally, SNGFR was 25.6 +/- 1.0 and 29.5 +/- 0.9 nl/min (P less than 0.001, n = 31) at 112 and 157 mmHg; kidney GFR increased similarly. These data and the predictions of a GFR model were then used to estimate autoregulatory efficiency. This analysis indicated that partial autoregulation occurred during TGF inhibition. Therefore, TGF is an essential, but probably not the only, mechanism mediating SNGFR autoregulation.


2019 ◽  
Vol 104 (6) ◽  
pp. e28.1-e28
Author(s):  
L Dhondt ◽  
S Croubels ◽  
P De Paepe ◽  
P De Cock ◽  
M Devreese

BackgroundOver the years pigs were promoted as potential animal model for humans due to their high degree of anatomical and physiological similarities with humans. Gasthuys et al. demonstrated that the maturation of the kidney function in terms of the glomerular filtration rate (GFR) in growing pigs was comparable to humans, but no data are currently available on renal plasma flow, renal tubular secretion and reabsorption.1 The aim of this pilot study was to unravel the contribution of distinct renal elimination processes in juvenile pigs and to compare with reported human values.MethodsEight seven-week-old pigs were intravenously administered a single bolus of a cocktail of following renal markers: iohexol (64.7 mg/kg body weight (BW), GFR), para-aminohippuric acid (PAH, 10 mg/kg BW, effective renal plasma flow (ERPF) and anion secretion), pindolol (0.05 mg/kg BW, cation secretion) and fluconazole (0.5 mg/kg, tubular reabsorption). Plasma and urinary concentrations were determined for PAH, pindolol and fluconazole at several time points. Only plasma concentrations were assessed for iohexol. PK modelling was performed with Phoenix® WinNonlin®.ResultsThe clearance of iohexol was 97.9 ± 16.1 ml/min/m² (mean ± SD). The ERPF, calculated as the renal clearance of PAH, was 9.5 ± 2.1 ml/min/kg. These GFR and ERPF values are approximately a factor 1.3 higher than the values observed in humans, namely 63.5–75.0 mL/min/m² and 6.5 ± 2.0 mL/min/kg.2,3 The net tubular secretion of PAH was 5.4 ± 1.8 mL/min/kg, which was comparable with the values obtained in humans (5.0 ± 1.8 mL/min/kg).3 Results for cation secretion and tubular reabsorption are not yet available (to be presented at the congress).ConclusionThe net tubular secretion of PAH was comparable between the juvenile pigs and humans. The GFR and ERPF were generally a factor 1.3 higher in juvenile pigs compared to humans.ReferencesGasthuys E., et al., Postnatal maturation of the glomerular filtration rate in conventional growing piglets as potential juvenile animal model for preclinical pharmaceutical research. Frontiers in Pharmacology 2017. 8.Schwartz GJ, Furth SL. Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatric Nephrology 2007;22(11):1839–1848.Gross AS, et al., Simultaneous administration of a cocktail of markers to measure renal drug elimination pathways: absence of a pharmacokinetic interaction between fluconazole and sinistrin, p-aminohippuric acid and pindolol. British Journal of Clinical Pharmacology 2001. 51(6):547–555.Disclosure(s)This study was funded by the Special Research Fund of Ghent University (BOF16/DOC/285).


2005 ◽  
Vol 289 (2) ◽  
pp. R620-R626 ◽  
Author(s):  
Kay-Pong Yip

A nonobstructing optical method was developed to measure proximal tubular fluid reabsorption in rat nephron at 0.25 Hz. The effects of uncaging luminal nitric oxide (NO) on proximal tubular reabsorption were investigated with this method. Proximal fluid reabsorption rate was calculated as the difference of tubular flow measured simultaneously at two locations (0.8–1.8 mm apart) along a convoluted proximal tubule. Tubular flow was estimated on the basis of the propagating velocity of fluorescent dextran pulses in the lumen. Changes in local tubular flow induced by intratubular perfusion were detected simultaneously along the proximal tubule, indicating that local tubular flow can be monitored in multiple sites along a tubule. The estimated tubular reabsorption rate was 5.52 ± 0.38 nl·min−1·mm−1 ( n = 20). Flash photolysis of luminal caged NO (potassium nitrosylpentachlororuthenate) was induced with a 30-Hz UV nitrogen-pulsed laser. Release of NO from caged NO into the proximal tubule was confirmed by monitoring intracellular NO concentration using a cell-permeant NO-sensitive fluorescent dye (DAF-FM). Emission of DAF-FM was proportional to the number of laser pulses used for uncaging. Photolysis of luminal caged NO induced a dose-dependent inhibition of proximal tubular reabsorption without activating tubuloglomerular feedback, whereas uncaging of intracellular cGMP in the proximal tubule decreased tubular flow. Coupling of this novel method to measure reabsorption with photolysis of caged signaling molecules provides a new paradigm to study tubular reabsorption with ambient tubular flow.


Sign in / Sign up

Export Citation Format

Share Document