Studies of the Biosynthesis of Renin with a Cell-Free Translation System

1981 ◽  
Vol 61 (s7) ◽  
pp. 241s-243s ◽  
Author(s):  
V. J. Dzau ◽  
A. Ouellette ◽  
R. Pratt

1. Poly(A)+ mRNA from mouse submaxillary gland encodes a polypeptide of molecular weight 48 000 (48K polypeptide) which is abundant in the male. 2. This polypeptide is selectively absent in the translation products of mRNA from a strain of genetically renin-deficient mice C57 BL/10J. 3. The 48K polypeptide binds and co-elutes in identical fashion with pure authentic renin on pepstatin affinity chromatography. 4. Immunoprecipitation of translation products of male glandular mRNA with renin-specific antibody yielded this 48K band upon analysis by SDS/polyacrylamide gel electrophoresis and fluorography. Pure renin of molecular weight 37 000 blocked the binding of this polypeptide to antirenin antibody. 5. Mouse submaxillary gland synthesizes a renin precursor. The renin mRNA is androgenically regulated.

1980 ◽  
Vol 59 (4) ◽  
pp. 297-299 ◽  
Author(s):  
K. Poulsen ◽  
J. Vuust ◽  
T. Lund

1. The biosynthetic precursor of renin (pre-prorenin) from mouse kidney is a single chain polypeptide with a molecular weight of 50 000. 2. This is the same value as previously found for mouse submaxillary gland pre-prorenin. 3. Mouse kidney pre-prorenin (mol. wt. 50 000) is larger than the enzymatically active renin (mol. wt. 40 000).


1983 ◽  
Vol 65 (5) ◽  
pp. 475-477 ◽  
Author(s):  
Marc Parmentier ◽  
Tadashi Inagami ◽  
Roland Pochet

1. Human kidney mRNA species were isolated and fractionated through a continuous sucrose gradient ultracentrifugation. 2. mRNA fractions were translated by using a rabbit reticulocyte lysate and [35S]metbionine as tracer. Double immunoprecipitation was carried out with highly specific anti-human renin and anti-rabbit γ-globulin antisera. 3. A 15S mRNA has been found to direct synthesis of a 45 000 molecular weight protein immunoprecipitable with anti-human renin. This protein is considered to be the ultimate precursor of renin (preprorenin).


1993 ◽  
Vol 13 (6) ◽  
pp. 3340-3349 ◽  
Author(s):  
X Danthinne ◽  
J Seurinck ◽  
F Meulewaeter ◽  
M Van Montagu ◽  
M Cornelissen

The RNA of satellite tobacco necrosis virus (STNV) is a monocistronic messenger that lacks both a 5' cap structure and a 3' poly(A) tail. We show that in a cell-free translation system derived from wheat germ, STNV RNA lacking the 600-nucleotide trailer is translated an order of magnitude less efficiently than full-size RNA. Deletion analyses positioned the translational enhancer domain (TED) within a conserved hairpin structure immediately downstream from the coat protein cistron. TED enhances translation when fused to a heterologous mRNA, but the level of enhancement depends on the nature of the 5' untranslated sequence and is maximal in combination with the STNV leader. The STNV leader and TED have two regions of complementarity. One of the complementary regions in TED resembles picornavirus box A, which is involved in cap-independent translation but which is located upstream of the coding region.


1990 ◽  
Vol 10 (1) ◽  
pp. 146-153 ◽  
Author(s):  
K Fischman ◽  
J C Edman ◽  
G M Shackleford ◽  
J A Turner ◽  
W J Rutter ◽  
...  

A cDNA for a potential tyrosine kinase-encoding mRNA was isolated from a mouse testis cDNA library. In a survey of eight mouse tissues, a transcript of 2.4 kilobases restricted to testis tissue was found. The mRNA encodes a 453-amino-acid protein of 51,383 daltons, the smallest tyrosine kinase protein ever described. RNA synthesized from the cDNA template directs the synthesis of a 51,000-Mr protein in a cell-free translation system. The carboxy-terminal 409 amino acids are 98 and 90% identical to the carboxy halves of the rat and human Fer proteins, respectively. This suggests that the cDNA represents an alternatively spliced testis-specific fer mRNA and is therefore termed by us ferT. On the basis of the appearance time of the fer mRNA in the testis of maturing neonatal mice, we speculate on the role played by this protein in the development of this organ.


Author(s):  
Shijie Ye ◽  
Allison Ann Berger ◽  
Dominique Petzold ◽  
Oliver Reimann ◽  
Benjamin Matt ◽  
...  

This article describes the chemical aminoacylation of the yeast phenylalanine suppressor tRNA with a series of amino acids bearing fluorinated side chains via the hybrid dinucleotide pdCpA and ligation to the corresponding truncated tRNA species. Aminoacyl-tRNAs can be used to synthesize biologically relevant proteins which contain fluorinated amino acids at specific sites by means of a cell-free translation system. Such engineered proteins are expected to contribute to our understanding of discrete fluorines’ interaction with canonical amino acids in a native protein environment and to enable the design of fluorinated proteins with arbitrary desired properties.


1985 ◽  
Vol 5 (2) ◽  
pp. 342-351 ◽  
Author(s):  
J R Greenberg ◽  
E Carroll

A variety of evidence suggests that the cytoplasmic mRNA-associated proteins of eucaryotic cells are derived from the cytoplasm and function there, most likely in protein synthesis or some related process. Furthermore, the evidence suggests that protein-free mRNA added to a cell-free translation system should become associated with a set of proteins similar to those associated with mRNA in native polyribosomes. To test this hypothesis, we added deproteinized rabbit reticulocyte mRNA to a homologous cell-free translation system made dependent on exogenous mRNA by treatment with micrococcal nuclease. The resulting reconstituted complexes were irradiated with UV light to cross-link the proteins to mRNA, and the proteins were analyzed by gel electrophoresis. The proteins associated with polyribosomal mRNA in the reconstituted complexes were indistinguishable from those associated with polyribosomal mRNA in intact reticulocytes. Furthermore, reticulocyte mRNA-associated proteins were very similar to those of cultured mammalian cells. The composition of the complexes varied with the translational state of the mRNA; that is, certain proteins present in polyribosomal mRNA-protein complexes were absent or reduced in amount in 40S to 80S complexes and in complexes formed in the absence of translation. However, other proteins, including a 78-kilodalton protein associated with polyadenylate, were present irrespective of translational state, or else they were preferentially associated with untranslated mRNA. These findings are in agreement with previous data suggesting that proteins associated with cytoplasmic mRNA are derived from the cytoplasm and that they function in translation or some other cytoplasmic process, rather than transcription, RNA processing, or transport from the nucleus to the cytoplasm.


FEBS Letters ◽  
1982 ◽  
Vol 148 (1) ◽  
pp. 122-126 ◽  
Author(s):  
Alan Shiels ◽  
Ian Phillips ◽  
Stephen Jeffrey ◽  
Elizabeth Shephard ◽  
Nicholas Carter

1998 ◽  
Vol 72 (3) ◽  
pp. 2398-2405 ◽  
Author(s):  
Toshihiko Ishii ◽  
Kazuko Shiroki ◽  
Duck-Hee Hong ◽  
Takahiro Aoki ◽  
Yoshihiro Ohta ◽  
...  

ABSTRACT Four mutants of the virulent Mahoney strain of poliovirus were generated by introducing mutations in nucleotides (nt) 128 to 134 of the genome, a region that contains a part of the stem-loop II (SLII) structure located within the internal ribosomal entry site (IRES; nt 120 to 590) (K. Shiroki, T. Ishii, T. Aoki, Y. Ota, W.-X. Yang, T. Komatsu, Y. Ami, M. Arita, S. Abe, S. Hashizume, and A. Nomoto, J. Virol. 71:1–8, 1997). These mutants (SLII mutants) replicated well in human HeLa cells but not in mouse TgSVA cells that had been established from the kidney of a poliovirus-sensitive transgenic mouse. Their neurovirulence in mice was also greatly attenuated compared to that of the parental virus. The poor replication activity of the SLII mutants in TgSVA cells appeared to be attributable to reduced activity of the IRES. Two and three naturally occurring revertants that replicated well in TgSVA cells were isolated from mutants SLII-1 and SLII-5, respectively. The revertants recovered IRES activity in a cell-free translation system from TgSVA cells and returned to a neurovirulent phenotype like that of the Mahoney strain in mice. Two of the revertant sites that affected the phenotype were identified as being at nt 107 and within a region from nt 120 to 161. A mutation at nt 107, specifically a change from uridine to adenine, was observed in all the revertant genomes and exerted a significant effect on the revertant phenotype. Exhibition of the full revertant phenotype required mutations in both regions. These results suggested that nt 107 of poliovirus RNA is involved in structures required for the IRES activity in mouse cells.


Sign in / Sign up

Export Citation Format

Share Document