scholarly journals Chemical aminoacylation of tRNAs with fluorinated amino acids for in vitro protein mutagenesis

Author(s):  
Shijie Ye ◽  
Allison Ann Berger ◽  
Dominique Petzold ◽  
Oliver Reimann ◽  
Benjamin Matt ◽  
...  

This article describes the chemical aminoacylation of the yeast phenylalanine suppressor tRNA with a series of amino acids bearing fluorinated side chains via the hybrid dinucleotide pdCpA and ligation to the corresponding truncated tRNA species. Aminoacyl-tRNAs can be used to synthesize biologically relevant proteins which contain fluorinated amino acids at specific sites by means of a cell-free translation system. Such engineered proteins are expected to contribute to our understanding of discrete fluorines’ interaction with canonical amino acids in a native protein environment and to enable the design of fluorinated proteins with arbitrary desired properties.

1993 ◽  
Vol 13 (6) ◽  
pp. 3340-3349 ◽  
Author(s):  
X Danthinne ◽  
J Seurinck ◽  
F Meulewaeter ◽  
M Van Montagu ◽  
M Cornelissen

The RNA of satellite tobacco necrosis virus (STNV) is a monocistronic messenger that lacks both a 5' cap structure and a 3' poly(A) tail. We show that in a cell-free translation system derived from wheat germ, STNV RNA lacking the 600-nucleotide trailer is translated an order of magnitude less efficiently than full-size RNA. Deletion analyses positioned the translational enhancer domain (TED) within a conserved hairpin structure immediately downstream from the coat protein cistron. TED enhances translation when fused to a heterologous mRNA, but the level of enhancement depends on the nature of the 5' untranslated sequence and is maximal in combination with the STNV leader. The STNV leader and TED have two regions of complementarity. One of the complementary regions in TED resembles picornavirus box A, which is involved in cap-independent translation but which is located upstream of the coding region.


2020 ◽  
Author(s):  
Alexey Shuvalov ◽  
Ekaterina Shuvalova ◽  
Nikita Biziaev ◽  
Elizaveta Sokolova ◽  
Konstantin Evmenov ◽  
...  

ABSTRACTThe Nsp1 protein of SARS-CoV-2 regulates the translation of host and viral mRNAs in cells. Nsp1 inhibits host translation initiation by occluding the entry channel of the 40S ribosome subunit. The structural study of SARS-CoV-2 Nsp1-ribosomal complexes reported post-termination 80S complex containing Nsp1 and the eRF1 and ABCE1 proteins. Considering the presence of Nsp1 in the post-termination 80S ribosomal complex simultaneously with eRF1, we hypothesized that Nsp1 may be involved in translation termination. Using a cell-free translation system and reconstituted in vitro translation system, we show that Nsp1 stimulates translation termination in the stop codon recognition stage at all three stop codons. This stimulation targets the release factor 1 (eRF1) and does not affect the release factor 3 (eRF3). The activity of Nsp1 in translation termination is provided by its N-terminal domain and the minimal required part of eRF1 is NM domain. We assume that biological meaning of Nsp1 activity in translation termination is binding with the 80S ribosomes translating host mRNAs and removal them from the pool of the active ribosomes.


ChemBioChem ◽  
2007 ◽  
Vol 8 (14) ◽  
pp. 1650-1653 ◽  
Author(s):  
Norihito Muranaka ◽  
Masanori Miura ◽  
Hikaru Taira ◽  
Takahiro Hohsaka

1990 ◽  
Vol 111 (1) ◽  
pp. 87-94 ◽  
Author(s):  
D Troschel ◽  
M Müller

A cell-free translation system from the facultatively photoheterotrophic bacterium Rhodobacter capsulatus is described. Synthesis of two proteins of the bacterium's photosynthetic apparatus (light-harvesting complex B870 alpha and beta) was performed by SP6 polymerase transcription of the subcloned genes, isolation of the mRNA and translation in vitro using a cell-free extract of R. capsulatus cells. The integration of these proteins in vitro into added intracytoplasmic membrane vesicles (ICM) is demonstrated. Without addition of ICM approximately 70% of the synthesized B870 proteins were soluble. If, however, ICM were present during synthesis, the majority of the soluble protein was found to associate with the membranes. The membrane-associated polypeptides could be solubilized only by detergent treatment but could not be extracted by treatment at alkaline pH (Na2CO3), suggesting that the proteins had been firmly inserted into the lipid bilayer. Moreover, the B870 alpha and beta proteins that integrated in vitro into ICM were also found to associate with pigment ligands and to assemble into a native reaction center/B870 complex. The native conformation of this complex isolated from ICM by Triton fractionation was demonstrated by microspectral analysis of the bound pigments.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yue Wu ◽  
Zhenling Cui ◽  
Yen-Hua Huang ◽  
Simon J. de Veer ◽  
Andrey V. Aralov ◽  
...  

AbstractAdvances in peptide and protein therapeutics increased the need for rapid and cost-effective polypeptide prototyping. While in vitro translation systems are well suited for fast and multiplexed polypeptide prototyping, they suffer from misfolding, aggregation and disulfide-bond scrambling of the translated products. Here we propose that efficient folding of in vitro produced disulfide-rich peptides and proteins can be achieved if performed in an aggregation-free and thermodynamically controlled folding environment. To this end, we modify an E. coli-based in vitro translation system to allow co-translational capture of translated products by affinity matrix. This process reduces protein aggregation and enables productive oxidative folding and recycling of misfolded states under thermodynamic control. In this study we show that the developed approach is likely to be generally applicable for prototyping of a wide variety of disulfide-constrained peptides, macrocyclic peptides with non-native bonds and antibody fragments in amounts sufficient for interaction analysis and biological activity assessment.


1993 ◽  
Vol 13 (6) ◽  
pp. 3340-3349
Author(s):  
X Danthinne ◽  
J Seurinck ◽  
F Meulewaeter ◽  
M Van Montagu ◽  
M Cornelissen

The RNA of satellite tobacco necrosis virus (STNV) is a monocistronic messenger that lacks both a 5' cap structure and a 3' poly(A) tail. We show that in a cell-free translation system derived from wheat germ, STNV RNA lacking the 600-nucleotide trailer is translated an order of magnitude less efficiently than full-size RNA. Deletion analyses positioned the translational enhancer domain (TED) within a conserved hairpin structure immediately downstream from the coat protein cistron. TED enhances translation when fused to a heterologous mRNA, but the level of enhancement depends on the nature of the 5' untranslated sequence and is maximal in combination with the STNV leader. The STNV leader and TED have two regions of complementarity. One of the complementary regions in TED resembles picornavirus box A, which is involved in cap-independent translation but which is located upstream of the coding region.


Sign in / Sign up

Export Citation Format

Share Document