Total Nephrectomy Alters Circulating Humoral Agents in Salt-Fed, Low-Renin Dahl S Rats to Favour Reduced Vasoconstriction in an Isolated, Perfused Bioassay Hindquarters

1982 ◽  
Vol 63 (s8) ◽  
pp. 227s-230s ◽  
Author(s):  
Louis Tobian ◽  
Susan Johnson-Hanlon ◽  
Mary Zitur ◽  
Junichi Iwai

1. When all renal tissue is removed from salt-fed Dahl S rats, the excessive amounts of a circulating humoral vasoconstrictor effect (or lack of a vasodilator effect) are abolished, and Dahl S rats become the equal of Dahl R rats with regard to these circulating vasoconstrictor effects. 2. Total nephrectomy of salt-fed S rats also alters circulating humoral agents so that vasoconstrictor responses to sympathetic nerve stimulation and to noradrenaline infusions are markedly diminished in a perfused hindquarters preparation. 3. Both these effects of total nephrectomy are seen only in S rats, not in R rats, although plasma renin levels are lower in S rats. Thus total nephrectomy must remove much more renin and angiotensin II in R rats. 4. The effect of total nephrectomy in S rats need not necessarily be the direct removal of circulating vasoconstrictor humoral agents issuing from the S kidney. It is quite possible that removal of S kidneys has a strong influence upon the release of circulating vasconstrictor or vasodilator agents emerging from other parts of the body. 6. These effects of total nephrectomy occurring solely in S rats add still more evidence pointing to a pivotal role for the kidney in the mechanism of the NaCl hypertension of Dahl S rats.

1974 ◽  
Vol 48 (s2) ◽  
pp. 37s-40s
Author(s):  
H. Zschiedrich ◽  
K. G. Hofbauer ◽  
E. Hackenthal ◽  
G. D. Baron ◽  
F. Gross

1. Isolated rat kidneys were perfused with a medium free of components of the renin-angiotensin system. 2. Angiotensin II, angiotensin I, tetradecapeptide renin substrate or rat plasma renin substrate added to the medium caused a dose-dependent increase of renal vascular resistance. 3. The vasoconstrictor effect of angiotensin II was inhibited by 1-Sar-8-Ala-angiotensin II (Saralasin). The inhibition was dose-dependent, being complete at the highest doses applied. In this dose range, Saralasin increased renal vascular resistance. Saralasin also inhibited vasoconstriction induced by tetradecapeptide renin substrate. 4. The vasoconstrictor effect of angiotensin I was suppressed by SQ 20881, up to a maximum of 87% depending on the dose. Similarly the increase in renal vascular resistance induced by a purified preparation of rat plasma renin substrate was inhibited by 55%; no effect on the action of tetradecapeptide renin substrate was observed. 5. The data suggest that, within the kidney, angiotensin I is converted into angiotensin II to the extent of about 1.25%. Since no angiotensin I is formed from synthetic renin substrate, the vasoconstrictor effect of the tetradecapeptide may be either due to a direct interaction with the angiotensin II receptor or the consequence of the intrarenal formation of angiotensin II. In contrast, the results with rat plasma renin substrate suggest that angiotensin I is formed from ‘natural’ substrate and is subsequently converted into angiotensin II.


Author(s):  
Sh. V. Akhadov ◽  
G. R. Ruzbanova ◽  
A. Sh. Akhadova

Objective. To study the infl uence of enalapril 20 mg/day on the sympathoadrenal (SAS) and renin-angiotensinaldosterone systems (RAAS). Design and methods. 149 subjects (102 patients with essential arterial hypertension (EAH) and 47 patients with primary hyperaldosteronism, PHA) were included. Mean systolic blood pressure (BP) (M  m) was 194,6  7,4 mmHg, diastolic BP - 116, 2  5,4 mmHg. Plasma renin activity (PRA) and plasma aldosterone concentration (PAC) were estimated by radio-immune method in active patients. PRA was rated as normal if ranged 1,0-3,0 ng/ml/h, PAC - 0,18-0,83 nmol/l (5-23 ng/dl or 50-230 pg/ml). Normal PAC/PRA ratio was 5-23. The daily urine excretion of adrenaline (normal - 18-33 mmol/l) and noradrenaline (normal - 150-256 mmol/l) were determined by fl uorometric method. Conclusions. 1) Effects of angiotensin-converting enzyme (ACE) inhibitors on the synthesis of aldosterone and catecholamines in EAH patients are associated with the changes of circulating angiotensin II concentration, and in PHA patients - with the decrease of tissue angiotensin II concentration in cortical layers of the adrenal gland and central nervous system. 2) Reactive increase PRA in EAH patients treated with enalapril is rather related to the blockade of renal tissue angiotensin-converting enzyme than to the circulating angiotensin II. 3) PHA patients are characterized by the phenomenon of up regulation of aldosterone receptors and of tissue renin-angiotensin system that is defi ned by optimum reduction of PAC, the lack of normalization of PRA and blood pressure in response to the application of enalapril 20 mg/day.


Neonatology ◽  
1979 ◽  
Vol 36 (3-4) ◽  
pp. 119-127 ◽  
Author(s):  
M.G. Pernollet ◽  
M.A. Devynck ◽  
G.J. Macdonald ◽  
P. Meyer

1984 ◽  
Vol 62 (1) ◽  
pp. 116-123 ◽  
Author(s):  
Ernesto L. Schiffrin ◽  
Jolanta Gutkowska ◽  
Gaétan Thibault ◽  
Jacques Genest

The angiotensin I converting enzyme (ACE) inhibitor enalapril (MK-421), at a dose of 1 mg/kg or more by gavage twice daily, effectively inhibited the pressor response to angiotensin I for more than 12 h and less than 24 h. Plasma renin activity (PRA) did not change after 2 or 4 days of treatment at 1 mg/kg twice daily despite effective ACE inhibition, whereas it rose significantly at 10 mg/kg twice daily. Blood pressure fell significantly and heart rate increased in rats treated with 10 mg/kg of enalapril twice daily, a response which was abolished by concomitant angiotensin II infusion. However, infusion of angiotensin II did not prevent the rise in plasma renin. Enalapril treatment did not change urinary immunorcactive prostaglandin E2 (PGE2) excretion and indomethacin did not modify plasma renin activity of enalapril-treated rats. Propranolol significantly reduced the rise in plasma renin in rats receiving enalapril. None of these findings could be explained by changes in the ratio of active and inactive renin. Water diuresis, without natriuresis and with a decrease in potassium urinary excretion, occurred with the higher dose of enalapril. Enalapril did not potentiate the elevation of PRA in two-kidney one-clip Goldblatt hypertensive rats. In conclusion, enalapril produced renin secretion, which was in part β-adrenergically mediated. The negative short feedback loop of angiotensin II and prostaglandins did not appear to be involved. A vasodilator effect, apparently independent of ACE inhibition, was found in intact conscious sodium-replete rats.


1995 ◽  
Vol 268 (5) ◽  
pp. R1137-R1142 ◽  
Author(s):  
J. C. Simmons ◽  
R. H. Freeman

L-Arginine analogues, e.g., NG-nitro-L-arginine methyl ester (L-NAME), increase arterial pressure and suppress renin release in the rat. On the basis of these observations, it was hypothesized that L-arginine analogues also would attenuate aldosterone secretion. This hypothesis was tested in anesthetized rats treated with L-NAME or NG-nitro-L-arginine (L-NNA, 185 mumol/kg ip). The aldosterone secretion rate, plasma renin activity, and adrenal blood flow were attenuated in rats treated with L-NAME and L-NNA compared with control animals. Similar experiments were performed in anephric rats to examine the effects of L-NAME on aldosterone secretion independent of the circulating reninangiotensin system. The administration of L-NAME reduced adrenal blood flow but failed to reduce aldosterone secretion in these anephric rats. Bilateral nephrectomy reduced plasma renin activity essentially to undetectable levels in these animals. In a third series of experiments, two groups of anephric rats were infused with angiotensin II (3 micrograms/kg body wt iv) to provide a stimulus for aldosterone secretion. Aldosterone secretion and adrenal blood flow were markedly reduced in angiotensin II-infused rats pretreated with L-NAME compared with the control anephric animals infused with angiotensin II. Overall these results suggest that L-arginine analogues attenuate aldosterone secretion by inhibiting the adrenal steroidogenic effects of endogenous or exogenous angiotensin II and/or by reducing plasma levels of renin/angiotensin.


1983 ◽  
Vol 244 (2) ◽  
pp. R244-R248 ◽  
Author(s):  
C. C. Barney ◽  
R. M. Threatte ◽  
M. J. Fregly

The role of angiotensin II in the control of water intake following deprivation of water for varying lengths of time was studied. Male rats were deprived of water for 0, 12, 24, 36, or 48 h. Water intakes were measured with and without pretreatment with the angiotensin I-converting enzyme inhibitor, captopril (50 mg/kg, ip). Captopril had no significant effect on water intake following either 0 or 12 h of water deprivation. However, captopril significantly attenuated water intake following 24-48 h of water deprivation with the magnitude of the attenuation increasing as the length of the period of water deprivation increased. Plasma renin activity was significantly increased over control levels after 24-48 h of water deprivation but not after 12 h of water deprivation. Plasma renin activity tended to increase as the length of the water-deprivation period increased. Serum osmolality and sodium concentration were significantly increased over control levels following 12-48 h of water deprivation. Serum osmolality and sodium concentration failed to show any further increases with increasing length of water deprivation beyond the increases following 12 h of water deprivation. The data indicate that the water intake of water-deprived rats can be divided into an angiotensin II-dependent component and angiotensin II-independent component. The angiotensin II-independent component appears to be more important in the early stages of water deprivation whereas the angiotensin II-dependent component becomes more important as the length of the water-deprivation period increases.


1988 ◽  
Vol 255 (4) ◽  
pp. F749-F754 ◽  
Author(s):  
H. M. Siragy ◽  
N. E. Lamb ◽  
C. E. Rose ◽  
M. J. Peach ◽  
R. M. Carey

ACRIP is a competitive inhibitor of renin in which an analogue of statine, (3R,4S)-4-amino-3-hydroxy-6-methylheptanoic acid, is incorporated into analogues of porcine renin substrate. ACRIP inhibits the enzymatic activity of renin, thus blocking the initiation of the angiotensin cascade. We studied the intrarenal action of ACRIP in small quantities without measurable systemic effects on renal function. In the first experiment, ACRIP was administered intrarenally at 0.02, 0.2, and 2 micrograms.kg-1.min-1 to uninephrectomized conscious dogs (n = 6) in metabolic balance at sodium intake of 10 meq/day. ACRIP, in doses of 0.02 and 0.2 micrograms.kg-1.min-1, markedly increased urine sodium excretion (UNaV) from 5.8 +/- 1.4 to 15.1 +/- 5.1 and 19.9 +/- 3.2 mu eq/min, respectively. Urinary flow rate (UV) underwent a similar increase and glomerular filtration rate (GFR) increased from 25.7 +/- 2.5 to 35.6 +/- 2.5 at 0.02 micrograms.kg-1.min-1 of ACRIP. Renal plasma flow (RPF), plasma renin activity (PRA), and plasma aldosterone concentration (PAC) were not affected. At 2 micrograms.kg-1.min-1, ACRIP traversed the kidney in quantities large enough to produce a reduction in systemic PRA and mean arterial pressure and caused natriuresis, diuresis, and increased GFR. In a second experiment, ACRIP was administered intrarenally at 0.2 micrograms.kg-1.min-1 in a separate group (n = 4) under identical conditions. ACRIP-induced increases in UV and UNaV were completely blocked by concurrent intrarenal administration of angiotensin II. The results indicate that intrarenal angiotensin II acts as a physiological regulator of renal sodium and fluid homeostasis.


Sign in / Sign up

Export Citation Format

Share Document