Hyponatraemia in quadriplegic patients

1988 ◽  
Vol 75 (4) ◽  
pp. 441-444 ◽  
Author(s):  
David J. Leehey ◽  
Alicia A. Picache ◽  
Gary L. Robertson

1. Studies were performed in five hyponatraemic (plasma sodium 129 ±1.6 mmol/l; plasma osmolality 268 ±3.0 mosmol/kg) quadriplegic patients in order to elucidate its aetiology. Five age- and sex-matched healthy subjects served as controls. 2. Daily urine volumes were high (4454 ± 624 ml) in the quadriplegic patients secondary to habitually increased fluid intake. 3. All quadriplegic patients had suppressed plasma arginine vasopressin levels (< 0.8 pmol/l) and were able to form dilute urine after a water load (20 ml/kg). However, free water clearance and the ability to excrete the water load were frequently impaired, and these defects were associated with reductions in both osmolar clearance and delivery of filtrate to the distal diluting sites of the nephron. 4. During hypertonic saline (5%, w/v, NaCl) infusion, plasma arginine vasopressin rose progressively before plasma osmolality reached the normal range, consistent with a resetting of the osmostat. 5. We conclude that hyponatraemia in quadriplegic patients is related to an intrarenal defect in water excretion and resetting of the osmostat coupled with increased fluid intake.

1986 ◽  
Vol 250 (5) ◽  
pp. E564-E569
Author(s):  
M. G. Ross ◽  
M. G. Ervin ◽  
R. D. Leake ◽  
O. Habeeb ◽  
D. A. Fisher

Chronically prepared third trimester fetal lambs were administered intravenous infusions of nitropruside. Mean basal systolic and diastolic blood pressure (59.8 and 42.4 mmHg, respectively) decreased significantly during the infusion (49.2 and 36.8 mmHg, respectively) and increased significantly during the recovery period (66.4 and 48.5 mmHg, respectively). Fetal plasma arginine vasopressin (AVP) significantly increased from a mean basal level of 1.25 +/- 0.09 to 6.81 +/- 0.39 pg/ml during the hypotensive period. Urinary AVP basal levels of 1.21 +/- 0.13 pg/ml increased to 3.18 +/- 0.66 pg/ml during the hypotensive period and 5.87 +/- 0.82 pg/ml during the recovery period (P less than 0.05). The fetal urinary response to nitroprusside appeared biphasic. The hypotensive phase was marked by decreases in both free water and osmolar clearances. During the recovery phase free water clearance remained decreased, while osmolar clearance returned to basal levels. Thus AVP secretion represents an important mechanism for ovine fetal modulation of solute and water excretion in response to utero hypotensive stress.


2008 ◽  
Vol 295 (5) ◽  
pp. F1295-F1300 ◽  
Author(s):  
Aleksander Krag ◽  
Flemming Bendtsen ◽  
Erling Bjerregaard Pedersen ◽  
Niels-Henrik Holstein-Rathlou ◽  
Søren Møller

The vasopressin analog terlipressin is believed to cause vasoconstriction selectively by V1 receptor stimulation. However, a possible antidiuretic effect by V2 receptor stimulation has never been ruled out. Twenty-two patients with ascites, including seven with refractory ascites, were included. The subjects were studied during a 400 ml/h oral water load before and after infusion of 2 mg of terlipressin (18 patients) or placebo infusion (4 patients). Effects on the V2 receptors were assessed by evaluating aquaporin (AQP)2 excretion, free water clearance (C[Formula: see text]), urine osmolality (Uosm), and fractional distal water excretion (DFeH2O). After terlipressin the excretion of AQP2 increased by 89% [144 ng/mmol creatinine, 95% confidence interval (CI) 73–214 ng/mmol creatinine, P = 0.001]. C[Formula: see text] decreased 1.05 ml/min (from 0.17 to −0.89 ml/min, P = 0.001), and DFeH2O decreased 37% (19 vs. 12; 95% CI 2–11, P = 0.01). Uosm increased by 27% (93 mosmol/kgH2O, 95% CI 23–164 mosmol/kgH2O, P = 0.02). Plasma sodium decreased 1.1 mmol/l ( P < 0.01). An increase in AQP2 excretion and a decrease in C[Formula: see text] and distal water excretion after terlipressin despite water loading is a clear indication of activation of the antidiuretic system (V2 receptor effect).


PEDIATRICS ◽  
1985 ◽  
Vol 75 (3) ◽  
pp. 501-507
Author(s):  
Mario Usberti ◽  
Carmine Pecoraro ◽  
Stefano Federico ◽  
Bruno Cianciaruso ◽  
Bruna Guida ◽  
...  

Indomethacin, a potent prostaglandin synthesis inhibitor, has been proven to be effective in a number of tubular defects characterized by enhanced prostaglandin (namely, prostaglandin E2 (PGE2) production, but its mechanism of action is poorly understood. To elucidate further the mechanism(s) by which indomethacin reverses the abnormal tubular functions, five children with different tubular defects (nephrogenic diabetes insipidus, three cases; Fanconi syndrome, one case; and pseudohypoaldosteronism, one case) were treated with indomethacin. Indomethacin, 1 mg/kg every eight hours, was given for 1 week to all children and then was given chronically to four of the children who responded to the drug. Its use was suspended in a 10 year-old-boy with nephrogenic diabetes insipidus because it proved ineffective. To assess the site along the nephron where indomethacin affects the solute and water excretion, an acute water load study was performed in three responsive children before and during the treatment. Indomethacin did not significantly alter the glomerular filtration rate but was effective in reducing diuresis and levels of urinary sodium and potassium excretion. In the child with Fanconi syndrome, indomethacin was also effective in controlling the urinary loss of phosphate, urate, glucose, and bicarbonate. Results of the water load studies show that indomethacin decreases the delivery of solute from the proximal tubule, reduces the fractional free water clearance, and increases the urine-plasma osmolar ratio. The rate of urinary excretion of prostaglandin E2 was high in all five children; it decreased below normal values in four of them after 1 week of treatment. In the child with nephrogenic diabetes insipidus who did not respond to indomethacin therapy, prostaglandin E2 excretion decreased but the rate remained higher than normal. These results suggest that indomethacin induces retention of solute and water mainly through an enhanced proximal tubular reabsorption.


1992 ◽  
Vol 126 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Tokihisa Kimura ◽  
Kozo Ota ◽  
Masaru Shoji ◽  
Minoru Inoue ◽  
Kazutoshi Sato ◽  
...  

To assess whether arginine vasopressin and atrial natriuretic hormone participate in impaired urinary dilution and excretion in glucocorticoid deficiency secondary to hypopituitarism. an acute oral water load of 20 ml·kg−1 BW was undertaken in the absence and presence of an oral hydrocortisone (60 mg) treatment in patients with ACTH deficiency (N= 7) and panhypopituitarism (N = 2). Plasma arginine vasopressin and atrial natriuretic hormone and renal water handling were simultaneously determined and compared with those in similarly water-loaded normal subjects. Plasma arginine vasopressin did not fall in response to decreased blood osmolality after an acute water load in the absence of hydrocortisone; plasma atrial natriuretic hormone did not change despite blood volume expansion; and impairment in urinary dilution and excretion remained. On the other hand, in the presence of hydrocortisone, plasma arginine vasopressin fell in response to a decrease in plasma osmolality and plasma atrial natriuretic hormone increased, thereby restoring urinary dilution and excretion. These results demonstrate that the impaired arginine vasopressin response to acute water loading play an essential role in deranged renal water and electrolyte handling in the state of glucocorticoid deficiency; the impaired release of atrial natriuretic hormone also may affect these disorders.


1986 ◽  
Vol 71 (1) ◽  
pp. 97-104 ◽  
Author(s):  
E. B. Pedersen ◽  
H. Danielsen ◽  
S. S. Sørensen ◽  
B. Jespersen

1. An oral water load of 20 ml/kg body wt. was given to eight patients with nephrotic syndrome before and after remission of the syndrome, and to 13 healthy control subjects. Urine volume (D), free water clearance (Cwater), plasma concentrations of arginine vasopressin (AVP), angiotensin II (ANG II) and aldosterone (Aldo), were determined before and three times during the first 4 h after loading. 2. D and Cwater increased to a significantly lower level (P < 0.01) after water loading in patients with nephrotic syndrome than in control subjects, but D and Cwater were normal after remission of the syndrome. The maximum increase in Cwater (ΔCwater max.) was 1.07 ml/min (median) before remission and 7.93 ml/min after, compared with 8.01 ml/min in the control group. 3. Creatinine clearance (Ccr) increased significantly after remission (63 ml/min to 88 ml/min, P < 0.01), and the fractional excretion of sodium was enhanced. AVP was higher in the nephrotic syndrome both before (2.9 pmol/l) and after remission (2.9 pmol/l) compared with the control group (1.8 pmol/l). ANG II and Aldo did not change after remission and remained at the same level as in the control group. 4. The elevation in ΔCwatermax after remission was accompanied by an increase in Ccr in all patients and ΔCwatermax. and Ccr were significantly correlated (ρ = 0.600, n = 16, P < 0.05). No relationship was found between the change in ΔCwater max. and ANG II and Aldo. 5. AVP was significantly suppressed in patients with nephrotic syndrome before remission, but not after remission nor in control subjects, so that although AVP did not differ in nephrotic patients before and after remission, AVP cannot be excluded as a contributory factor to the reduction in Cwater in the nephrotic syndrome. 6. It is concluded that patients with nephrotic syndrome excrete an oral water load slower than control subjects and that the excretion rate is normal after remission of the syndrome. It is suggested that the normalization of Cwater may be attributed to an increase in glomerular filtration rate or a decrease in proximal tubular sodium reabsorption, although a possible role for AVP has not been excluded.


1987 ◽  
Vol 114 (2) ◽  
pp. 243-248 ◽  
Author(s):  
P. Norsk ◽  
F. Bonde-Petersen ◽  
J. Warberg

Abstract. In order to examine the influence of carotid baroreceptor stimulation on arginine vasopressin secretion, 8 normal healthy males were subjected to static neck suction of −3.3 kPa for 20 min in the upright sitting position after overnight food and fluid restriction. The plasma concentration of arginine vasopressin did not change significantly during neck suction. However, in 3 subjects the termination of neck suction induced large increases in plasma arginine vasopressin from 1.8 to 63.7 ng/l, from 0.7 to 34.3 ng/l and from 2.1 to 19.0 ng/l, respectively. Two subjects experienced symptoms such as nausea and paleness during neck suction. Systolic arterial pressure increased slightly but significantly during neck suction from 15.3 ± 0.3 to 15.7 ± 0.4 kPa (N = 7, P < 0.05), whereas mean arterial pressure, diastolic arterial pressure, central venous pressure, heart rate, plasma osmolality, plasma sodium and potassium were unchanged. Haemoglobin concentration in blood and haematocrit increased significantly during and after neck suction, whereas plasma volume decreased. We conclude that neck suction with a negative pressure of 3.3 kPa in upright sitting man does not significantly affect plasma arginine vasopressin. However, termination of the stimulation induces large increases in some subjects. This may be explained by a direct effect on the vagus nerve or by a selective deloading of carotid baroreceptors.


1988 ◽  
Vol 255 (6) ◽  
pp. R940-R945 ◽  
Author(s):  
M. Baerwolff ◽  
P. Bie

The possibility that small amounts of vasopressin (AVP) reduce water excretion without affecting solute excretion was investigated in conscious dogs. AVP was infused intravenously for 120 min at rates of 2 and 5 pg.min-1.kg body wt-1 during water diuresis elicited by a sustained water load of 2% body wt. During control experiments urine osmolality was constantly approximately 60 mosmol/kgH2O; during AVP infusions it increased by factors of 1.36 (P less than 0.01) and 2.12 (P less than 0.01), respectively, concomitant with 39 +/- 6 and 61 +/- 7% reductions in urine flow. Osmolar and free water clearances decreased significantly. Sodium excretion did not change; changes in potassium excretion during AVP were similar to those of the control series, i.e., a gradual decline. During AVP, 5 pg.min-1. kg-1, creatinine and urea clearances decreased (25 +/- 2 and 31 +/- 7%, respectively, both P less than 0.01). With the assumption of metabolic clearance rates of AVP of 15-40 ml.min-1.kg body wt-1, the increase in plasma AVP during the infusion of 2 pg.min-1.kg body wt-1 was 5-13 X 10(-14) M. It is concluded that small increments in plasma AVP may reduce glomerular filtration rate and that with increasing levels of AVP in plasma 1) reduction of free water clearance, 2) reduction in urea clearance, and 3) natriuresis-kaliuresis occur in that order. Apparently AVP cannot reduce water excretion without changing the rate of excretion of solutes.


1975 ◽  
Vol 80 (3) ◽  
pp. 453-464 ◽  
Author(s):  
U. Merkelbach ◽  
P. Czernichow ◽  
R. C. Gaillard ◽  
M. B. Vallotton

ABSTRACT A radioimmunoassay for [8-arginine]-vasopressin (AVP), previously described (Czernichow et al. 1975) has been used for the determination of antidiuretic hormone in a 4 ml urine sample. AVP is extracted from acidified urine with a cation exchanger (Amberlite CG 50) with an overall recovery of 72 %. The blank value measured in extracted samples of urine was 0.29 pg/ml ± 0.21 (sem) and calculated by extrapolation of the regression line of the recovery experiment was 0.49 pg/ml. The coefficient of variation within-assay was 13 % and between-assay 18%. Addition of the amounts of AVP found in each specimen of urine voided gave results nearly identical to those of the amounts found in 24 h pool of urine, indicating that the assay was not affected by changes in concentration of the other urinary components during the day. The daily urinary excretion of AVP measured in 34 subjects was found to be 34 ng in 17 women and 70 ng in 17 men, a significant difference. Urinary concentration and excretion rate of AVP rose during thirst test and during Carter-Robbins test performed in 13 healthy subjects. In the latter test it was observed that the women displayed a strikingly more pronounced AVP elevation after the osmolar stimulus than the men. In both sexes a significant correlation was found between AVP excretion rate and plasma osmolality as well as free water clearance. Three cases of complete or incomplete diabetes insipidus and potomania could be clearly differentiated according to the total output of AVP during the thirst test. Extremely high values of AVP were found in the urine of 5 subjects with Schwartz-Bartter syndrome associated with bronchogenic tumours.


2008 ◽  
Vol 294 (3) ◽  
pp. F638-F644 ◽  
Author(s):  
Timo Rieg ◽  
Kanishka Pothula ◽  
Jana Schroth ◽  
Joseph Satriano ◽  
Hartmut Osswald ◽  
...  

Activation of adenosine A1 receptors (A1R) can inhibit arginine vasopressin (AVP)-induced cAMP formation in isolated cortical and medullary collecting ducts. To assess the in vivo consequences of the absence of A1R, we performed experiments in mice lacking A1R (A1R−/−). We assessed the effects of the vasopressin V2 receptor (V2R) agonist 1-desamino-8-d-arginine vasopressin (dDAVP) on cAMP formation in isolated inner medullary collecting ducts (IMCD) and on water excretion in conscious water-loaded mice. dDAVP-induced cAMP formation in isolated IMCD was significantly greater (∼2-fold) in A1R−/− compared with wild-type mice (WT) and, in contrast to WT, was not inhibited by the A1R agonist N6-cyclohexyladenosine. A1R−/− and WT had similar basal urinary excretion of vasopressin, expression of aquaporin-2 protein in renal cortex and medulla, and acute increases in urinary flow rate and electrolyte-free water clearance in response to the V2R antagonist SR121463 or acute water loading; the latter increased inner medullary A1R expression in WT. Dose dependence of dDAVP-induced antidiuresis after acute water loading was not different between the genotypes. However, A1R−/− had greater inner medullary expression of cyclooxygenase-1 under basal conditions and of the P2Y2 and EP3 receptor in response to water loading compared with WT mice. Thus vasopressin-induced cAMP formation is enhanced in isolated IMCD of mice lacking A1R, but the adenosine-A1R/V2R interaction demonstrated in vitro is likely compensated in vivo by multiple mechanisms, a number of which can be “uncovered” by water loading.


Sign in / Sign up

Export Citation Format

Share Document