Influence of age on glomerular binding of angiotensin II in normotensive and spontaneously hypertensive rats

1989 ◽  
Vol 76 (6) ◽  
pp. 619-623 ◽  
Author(s):  
E. A. Messenger ◽  
C. Stonier ◽  
G. M. Aber

1. Glomerular angiotensin II (ANG II) binding has been studied in normotensive (NTR) and spontaneously hypertensive (SHR) rats at 5, 10, 15 and 20 weeks of age. 2. Binding of 125I-labelled ANG II by glomeruli from NTR and SHR was similar at 5 and 10 weeks of age, with 5 week values of 426.4 (range 384-469) and 400.2 ± 245 fmol/mg of protein; however, at 15 and 20 weeks ANG II binding by SHR glomeruli was significantly greater than by NTR, with 20 week values of 614.7 ± 245 and 308.3 ± 31.8 fmol/mg of protein, respectively (P < 0.01). 3. The ANG II binding affinity constant (Ka) of glomeruli from NTR and SHR was comparable at 5, 10 and 15 weeks of age, with values of 1.5 (range 1.1-1.9) and 1.08 ± 0.35 nmol/l, respectively, at 5 weeks; whereas at 20 weeks the Ka for SHR glomeruli was significantly greater than for NTR, with values of 1.85 ± 0.45 and 0.66 ± 0.22 nmol/l, respectively (P < 0.001). 4. Age-related changes in glomerular binding of ANG II in SHR were not found to be related to changes in either plasma renin activity or systolic blood pressure.

1988 ◽  
Vol 75 (2) ◽  
pp. 191-196 ◽  
Author(s):  
E. A. Messenger ◽  
C. Stonier ◽  
G. M. Aber

1. Angiotensin II (ANG II) binding and the physiological response to exogenous ANG II have been studied in isolated glomerular preparations from normotensive (NTR) and spontaneously hypertensive (SHR) rats. 2. The binding of 125I-labelled ANG II by glomeruli from SHR was significantly greater than that by glomeruli from NTR, whereas the binding affinity constant (Ka) showed that the SHR ANG II glomerular receptor had a lower affinity for the hormone than the NTR glomerular receptor. 3. Glomeruli from SHR were significantly less responsive to exogenous ANG II than those from NTR. 4. Sodium loading resulted in a significant increase in ANG II binding by glomeruli from NTR, whereas a decrease in binding occurred in glomeruli from SHR. 5. Although a high sodium intake caused a reduction in the response of glomeruli from both NTR and SHR to exogenous ANG II, these changes were not statistically significant. In NTR this was associated with a decrease in the concentration of agonist required to cause half-maximal response (EC50), whereas an increase in EC50 was shown by glomeruli from SHR.


2015 ◽  
Vol 129 (6) ◽  
pp. 505-513 ◽  
Author(s):  
Mark Del Borgo ◽  
Yan Wang ◽  
Sanja Bosnyak ◽  
Morimer Khan ◽  
Pia Walters ◽  
...  

We have synthesized a highly selective compound that is able to target a protein-binding site [called angiotensin (Ang) II type 2 receptor, AT2R] in the cardiovascular system. This research tool will enhance our ability to stimulate AT2R to produce protective effects against cardiovascular disease.


2012 ◽  
Vol 30 ◽  
pp. e243
Author(s):  
Angelika Puzserova ◽  
Veronika Ilovska ◽  
Peter Balis ◽  
Peter Slezak ◽  
Natalia Sestakova ◽  
...  

2005 ◽  
Vol 25 (7) ◽  
pp. 878-886 ◽  
Author(s):  
Jin Zhou ◽  
Hiromichi Ando ◽  
Miroslava Macova ◽  
Jingtao Dou ◽  
Juan M Saavedra

Endothelial dysfunction and inflammation enhance vulnerability to hypertensive brain damage. To explore the participation of Angiotensin II (Ang II) in the mechanism of vulnerability to cerebral ischemia during hypertension, we examined the expression of inflammatory factors and the heat shock protein (HSP) response in cerebral microvessels from spontaneously hypertensive rats and their normotensive controls, Wistar Kyoto rats. We treated animals with vehicle or the Ang II AT1 receptor antagonist candesartan, 0.3 mg/kg/day, via subcutaneously implanted osmotic minipumps for 4 weeks. Spontaneously hypertensive rats expressed higher Angiotensin II AT1 receptor protein and mRNA than normotensive controls. Candesartan decreased the macrophage infiltration and reversed the enhanced tumor necrosis factor-α and interleukin-1β mRNA and nuclear factor-κB in microvessels in hypertensive rats. The transcription of many HSP family genes, including HSP60, HSP70 and HSP90, and heat shock factor-1 was higher in hypertensive rats and was downregulated by AT1 receptor blockade. Our results suggest a proinflammatory action of Ang II through AT1 receptor stimulation in cerebral microvessels during hypertension, and very potent antiinflammatory effects of the Ang II AT1 receptor antagonist. These compounds might be considered as potential therapeutic agents against ischemic and inflammatory diseases of the brain.


2016 ◽  
pp. 561-570
Author(s):  
P. P. WOŁKOW ◽  
B. BUJAK-GIŻYCKA ◽  
J. JAWIEŃ ◽  
R. OLSZANECKI ◽  
J. MADEJ ◽  
...  

We used mass spectrometry to quantitate production of angiotensinogen metabolites in renal artery of 3- and 7-month-old Wistar-Kyoto (WKY) and Spontaneously Hypertensive Rats (SHR). Tissue fragments were incubated for 15 min in oxygenated buffer, with added angiotensin I. Concentrations of angiotensins I (ANG I), II (ANG II), III (ANG III), IV (ANG IV), angiotensin (1-9) [ANG (1-9)], angiotensin (1-7) [ANG (1-7)], and angiotensin (1-5) [ANG (1-5)], excreted into the buffer during experiment, were measured using liquid chromatography-mass spectrometry (LC/MS) and expressed per mg of dry tissue. Effects of pretreatment with 10 μM perindoprilat on the production of ANG I metabolites were quantitated. Background production of any of ANG I metabolites differed neither between WKY and SHR rats nor between 3- and 7-month-old rats. Perindoprilat pretreatment of renal arteries resulted, as expected, in decrease of ANG II production. However, renal arteries of 7-month-old SHR rats were resistant to ACE inhibitor and did not change ANG II production in response to perindoprilat. In renal arteries, taken from 3-month-old rats, pretreated with perindoprilat, incubation with ANG I, resulted in the level of ANG (1-9) significantly higher in SHR than WKY rats. Our conclusion is that in SHR rats, sensitivity of renal artery ACE to perindoprilat inhibition changes with age.


Sign in / Sign up

Export Citation Format

Share Document