Evidence for the indirect utilization of glucose for the synthesis of hepatic glycogen in man

1992 ◽  
Vol 83 (6) ◽  
pp. 677-682
Author(s):  
R. F. G. J. King ◽  
M. Madan ◽  
D. Alexander ◽  
A. Boyd ◽  
K. Ibrahim ◽  
...  

1. This study was designed to test the hypothesis that three-carbon intermediates can be used in the ‘indirect’ pathway of glycogen synthesis in human liver (i.e. a route additional to the use of glucose by the ‘direct’ pathway). 2. After an overnight fast, 13 patients were given an infusion of 20% (w/v) glucose before elective abdominal operation. All received a 2.5 g bolus of 2220 kBq of selectively 3H- and 14C-labelled glucose before removal of a 1 g biopsy of liver. 3H and 14C were determined in purified glycogen as well as in glucose and lactate from samples of peripheral blood. 3. The ratio and specific activities of 3H and 14C in glycogen were found to be significantly lower than those in administered glucose. By calculation, 7–74% of glycogen repletion occurred by indirect pathways and not all of this was from the glucose supplied. 4. This study suggests that the operation of a direct pathway in man is not exclusive and that significant repletion of hepatic glycogen occurs by an indirect route.

2012 ◽  
Vol 303 (7) ◽  
pp. E875-E885 ◽  
Author(s):  
Ana F. Soares ◽  
Rui A. Carvalho ◽  
Francisco J. Veiga ◽  
Marco G. Alves ◽  
Fátima O. Martins ◽  
...  

Type 1 diabetes subjects are characterized by impaired direct pathway synthesis of hepatic glycogen that is unresponsive to insulin therapy. Since it is not known whether this is an irreversible defect of insulin-dependent diabetes, direct and indirect pathway glycogen fluxes were quantified in streptozotocin (STZ)-induced diabetic rats and compared with STZ rats that received subcutaneous or intraperitoneal insulin (I-SC or I-IP). Three groups of STZ rats were studied at 18 days post-STZ treatment. One group was administered I-SC and another I-IP as two daily injections of short-acting insulin at the start of each light and dark period for days 9–18. A third group did not receive any insulin, and a fourth group of nondiabetic rats was used as control. Glycogen synthesis via direct and indirect pathways, de novo lipogenesis, and gluconeogenesis were determined over the nocturnal feeding period using deuterated water. Direct pathway was residual in STZ rats, and glucokinase activity was also reduced significantly from control levels. Insulin administration restored both net glycogen synthesis via the direct pathway and glucokinase activity to nondiabetic control levels and improved the lipogenic pathway despite an inefficient normalization of the gluconeogenic pathway. We conclude that the reduced direct pathway flux is not an irreversible defect of insulin-dependent diabetes.


1996 ◽  
Vol 81 (5) ◽  
pp. 2020-2026 ◽  
Author(s):  
Hans Gunderson ◽  
Nadja Wehmeyer ◽  
Diane Burnett ◽  
John Nauman ◽  
Cynthia Hartzell ◽  
...  

Gunderson, Hans, Nadja Wehmeyer, Diane Burnett, John Nauman, Cynthia Hartzell, and Scott Savage. Exercise and exhaustion effects on glycogen synthesis pathways. J. Appl. Physiol. 81(5): 2020–2026, 1996.—Female Sprague-Dawley rats were infused with [1-13C]glucose to measure the effect of endurance training and the effect of various metabolic conditions on pathways of hepatic glycogen synthesis. Four metabolic states [sedentary (S), trained (T), sedentary exhausted (SE), and trained exhausted (TE)] were studied. T and TE rats were trained on a motor-driven treadmill (30 m/min, 15% grade, 1.0 h/day, 5 days/wk) for 8–10 wk. After a 24-h fast, SE and TE rats were run to exhaustion (sedentary average = 78 min, trained average = 155 min) at a training pace and immediately infused with labeled glucose for 2 h. S and T rats were infused after a 24-h fast. After infusion, tissues were removed and glycogen was isolated and hydrolyzed to glucose. The glucose was measured for distribution of13C by using nuclear magnetic resonance. Glycogen was synthesized predominantly by the indirect pathway for all metabolic states, indicating that infused glucose was first metabolized primarily in the peripheral tissue. The direct-pathway utilization was greater in rested S than in rested T animals (30 vs. 14%); however, for exhausted animals, the trained use of the direct pathway was greater (22 vs. 9%). Both TE and rested T animals utilize the indirect pathway a comparable amount. Sedentary animals, on the other hand, dramatically decreased utilization of the direct pathway, with exhaustive exercise changing from 30 to 9%. The results indicate that endurance training modifies glucose utilization during glycogen synthesis after fasting and exhaustive exercise.


1990 ◽  
Vol 259 (3) ◽  
pp. E335 ◽  
Author(s):  
G I Shulman ◽  
G Cline ◽  
W C Schumann ◽  
V Chandramouli ◽  
K Kumaran ◽  
...  

The effect of fasting vs. refeeding on hepatic glycogen repletion by the direct pathway, i.e., glucose----glucose 6-phosphate (G-6-P)----glycogen, was determined. Acetaminophen was administered during an infusion of glucose labeled with [1-13C]- and [6-14C]glucose into four healthy volunteers after an overnight fast and into the same subjects 4 h after breakfast. 13C enrichments in C-1 and C-6 of glucose formed from urinary acetaminophen glucuronide compared with enrichments in C-1 and C-6 of plasma glucose provided an estimate of glycogen formation by the direct pathway. The specific activity of glucose from the glucuronide compared with the specific activity of the plasma glucose, along with the percentages of 14C in C-1 and C-6 of the glucose from the glucuronide, also provided an estimate of the amount of glycogen formed by the direct pathway. The estimates were similar. Those from [6-14C]glucose would have been higher than from [1-13C]glucose if the pentose cycle contribution to overall glucose utilization had been significant. After an overnight fast, during the last hour of infusion, 49 +/- 3% of the glycogen formed was formed via the direct pathway. After breakfast, at similar plasma glucose and insulin concentrations, the percentage increased to 69 +/- 7% (P less than 0.02). Thus the contributions of the pathways to hepatic glycogen formation depend on the dietary state of the individual. For a dietary regimen in which individuals consume multiple meals per day containing at least a moderate amount of carbohydrates most glycogen synthesis occurs by the direct pathway.


2021 ◽  
Vol 10 (4) ◽  
pp. 596
Author(s):  
Cristina Barosa ◽  
Rogério T. Ribeiro ◽  
Rita Andrade ◽  
João F. Raposo ◽  
John G. Jones

Dietary fructose overshadows glucose in promoting metabolic complications. Intestinal fructose metabolism (IFM) protects against these effects in rodents, by favoring gluconeogenesis, but the extent of IFM in humans is not known. We therefore aimed to infer the extent of IFM by comparing the contribution of dietary fructose to systemic glucose and hepatic glycogen appearance postprandially. Twelve fasting healthy subjects ingested two protein meals in random order, one supplemented with 50 g 5/95 fructose/glucose (LF) and the other with 50 g 55/45 fructose/glucose (HF). Sources of postprandial plasma glucose appearance and hepatic glycogen synthesis were determined with deuterated water. Plasma glucose excursions, as well as pre- and post-meal insulin, c-peptide, and triglyceride levels were nearly identical for both meals. The total gluconeogenic contribution to plasma glucose appearance was significantly higher for HF versus LF (65 ± 2% vs. 34 ± 3%, p < 0.001). For HF, Krebs cycle anaplerosis accounted for two-thirds of total gluconeogenesis (43 ± 2%) with one-third from Triose-P sources (22 ± 1%). With LF, three-quarters of the total gluconeogenic contribution originated via Krebs cycle anaplerosis (26 ± 2%) with one-quarter from Triose-P sources (9 ± 2%). HF and LF gave similar direct and indirect pathway contributions to hepatic glycogen synthesis. Increasing the fructose/glucose ratio had significant effects on glucose appearance sources but no effects on hepatic glycogen synthesis sources, consistent with extensive IFM. The majority of fructose carbons were converted to glucose via the Krebs cycle.


1986 ◽  
Vol 251 (5) ◽  
pp. E584-E590 ◽  
Author(s):  
C. H. Lang ◽  
G. J. Bagby ◽  
H. L. Blakesley ◽  
J. L. Johnson ◽  
J. J. Spitzer

In the present study hepatic glycogenesis by the direct versus indirect pathway was determined as a function of the glucose infusion rate. Glycogen synthesis was examined in catheterized conscious rats that had been fasted 48 h before receiving a 3-h infusion (iv) of glucose. Glucose, containing tracer quantities of [U-14C]- and [6-3H]glucose, was infused at rates ranging from 0 to 230 mumol X min-1 X kg-1. Plasma concentrations of glucose, lactate, and insulin were positively correlated with the glucose infusion rate. Despite large changes in plasma glucose, lactate, and insulin concentrations, the rate of hepatic glycogen deposition (0.46 +/- 0.03 mumol X min-1 X g-1) did not vary significantly between glucose infusion rates of 20 and 230 mumol X min-1 X kg-1. However, the percent contribution of the direct pathway to glycogen repletion gradually increased from 13 +/- 2 to 74 +/- 4% in the lowest to the highest glucose infusion rates, with prevailing plasma glucose concentrations from 9.4 +/- 0.5 to 21.5 +/- 2.1 mM. Endogenous glucose production was depressed (by up to 40%), but not abolished by the glucose infusions. Only a small fraction (7-14%) of the infused glucose load was incorporated into liver glycogen via the direct pathway irrespective of the glucose infusion rate. Our data indicate that the relative contribution of the direct and indirect pathways of hepatic glycogen synthesis are dependent on the glucose load or plasma glucose concentration and emphasize the predominance of the indirect pathway of glycogenesis at plasma glucose concentrations normally observed after feeding.


1991 ◽  
Vol 260 (2) ◽  
pp. E194-E202 ◽  
Author(s):  
A. Mitrakou ◽  
R. Jones ◽  
Y. Okuda ◽  
J. Pena ◽  
N. Nurjhan ◽  
...  

The present studies were undertaken to quantitate the relative contributions of the indirect and direct pathways for hepatic glycogen repletion and to determine the role of splanchnic tissues in provision of C precursors used for the indirect pathway. For this purpose, we administered oral glucose (1.4 g/kg) enriched with [1-14C]glucose to 18-h fasted dogs and measured net hepatic and net gastrointestinal glucose, lactate, and alanine balance, hepatic and gastrointestinal fractional extraction [( 3H]lactate), release and uptake of lactate, as well as the total amount of hepatic glycogen formed from the oral glucose and the 14C labeling pattern of the glycogen-glucose C. Although net hepatic glucose uptake (8.7 +/- 0.6 g, 27% of the oral load) exceeded the amount of glycogen formed from the oral glucose (6.3 +/- 1.1 g), analysis of radioactivity in C-1 of the glycogen glucose indicated that nearly 50% of the glycogen was formed by the indirect pathway. Net hepatic uptake of lactate (1.4 +/- 0.1 g) and alanine (1.5 +/- 0.1 g) could account for greater than 90% of glycogen formed by the indirect pathway if all of the lactate and alanine taken up by the liver had been incorporated into glycogen. Release of lactate and alanine by splanchnic tissues approximated the amount of lactate and alanine taken up by the liver. However, in addition to taking up lactate, the liver also produced nearly as much lactate as the gastrointestinal tract (1.8 +/- 0.2 vs. 2.0 +/- 0.3 g, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 277 (5) ◽  
pp. E815-E823 ◽  
Author(s):  
F. Fery ◽  
L. Plat ◽  
E. O. Balasse

The effects of fasting on the pathways of insulin-stimulated glucose disposal were explored in three groups of seven normal subjects. Group 1 was submitted to a euglycemic hyperinsulinemic clamp (∼100 μU/ml) after both a 12-h and a 4-day fast. The combined use of [3-3H]- and [U-14C]glucose allowed us to demonstrate that fasting inhibits, by ∼50%, glucose disposal, glycolysis, glucose oxidation, and glycogen synthesis via the direct pathway. In group 2, in which the clamp glucose disposal during fasting was restored by hyperglycemia (155 ± 15 mg/dl), fasting stimulated glycogen synthesis (+29 ± 2%) and inhibited glycolysis (−32 ± 3%) but only in its oxidative component (−40 ± 3%). Results were similar in group 3 in which the clamp glucose disposal was restored by a pharmacological elevation of insulin (∼2,800 μU/ml), but in this case, both glycogen synthesis and nonoxidative glycolysis participated in the rise in nonoxidative glucose disposal. In all groups, the reduction in total carbohydrate oxidation (indirect calorimetry) induced by fasting markedly exceeded the reduction in circulating glucose oxidation, suggesting that fasting also inhibits intracellular glycogen oxidation. Thus prior fasting favors glycogen retention by three mechanisms: 1) stimulation of glycogen synthesis via the direct pathway; 2) preferential inhibition of oxidative rather than nonoxidative glycolysis, thus allowing carbon conservation for glycogen synthesis via the indirect pathway; and 3) suppression of intracellular glycogen oxidation.


1995 ◽  
Vol 269 (4) ◽  
pp. E766-E773 ◽  
Author(s):  
K. I. Rother ◽  
W. F. Schwenk

To validate a method to “biochemically biopsy” the immediate precursor of intrahepatic glycogen [uridyl diphosphate (UDP)-glucose] using acetaminophen and to assess how fasting affects the direct and indirect pathways of glycogen synthesis, dogs were fasted overnight (group 1, n = 5) or for 2.5 days (group 2, n = 5) and then given a 4-h duodenal infusion of unlabeled glucose, [3-3H]glucose, and [U-14C]lactate to label hepatic glycogen via the direct and indirect pathways, respectively, and [1-13C]galactose to measure intrahepatic UDP-glucose flux. After 3 h for equilibration, acetaminophen was given and urine was collected for acetaminophen glucuronide. Multiple liver biopsies were obtained. The mean 3H/14C ratios of glucose derived from glycogen (10.4 +/- 4.1 and 1.1 +/- 0.3 for groups 1 and 2, respectively) and glucose derived from acetaminophen glucuronide (11.5 +/- 4.0 and 1.0 +/- 0.1 for groups 1 and 2, respectively) were similar. Fasting significantly increased UDP-glucose flux, the rate of glycogen synthesis, and the contribution of the indirect pathway. We conclude that, in dogs, 1) no functional hepatic zonation exists with regard to acetaminophen glucuronidation and liver glycogen synthesis and 2) with appropriate choice of isotopic tracers and study design, UDP-glucose flux can accurately reflect rates of hepatic glycogen synthesis.


1995 ◽  
Vol 269 (6) ◽  
pp. E1037-E1043 ◽  
Author(s):  
D. Massillon ◽  
W. Chen ◽  
M. Hawkins ◽  
R. Liu ◽  
N. Barzilai ◽  
...  

Mice were studied with the euglycemic hyperinsulinemic and the hyperglycemic clamp techniques after a 6-h fast: 1) euglycemic (6.7 +/- 0.2 mM) hyperinsulinemia (approximately 800 microU/ml); 2) hyperglycemic (15.3 +/- 0.4 mM) hyperinsulinemia (approximately 800 microU/ml). All mice received an infusion of [3-3H]glucose and [U-14C]lactate. Basal hepatic glucose production (HGP) averaged approximately 170 mumol.kg-1.min-1 in both groups. During euglycemic and hyperglycemic hyperinsulinemia, HGP decreased by 53% (to 76.7 +/- 11.1 mumol.kg-1.min-1; P < 0.01) and 74% (to 43.3 +/- 7.2 mumol.kg-1.min-1; P < 0.01), respectively. Hyperglycemia increased glucose cycling (by 2.1-fold; P < 0.01) and the contribution of gluconeogenesis to HGP (88 vs. 43%; P < 0.01) while decreasing that of glycogenolysis (12 vs. 57%; P < 0.01). The percentage of neosynthetized hepatic glycogen formed via the direct pathway was markedly increased during hyperglycemia (53 +/- 2% vs. 23 +/- 3%; P < 0.01): These data indicate that the assessment of hepatic glucose fluxes can be accomplished in conscious unrestrained mice and that, in the presence of hyperinsulinemia, hyperglycemia causes 1) a further inhibition of HGP mainly via inhibition of glycogenolysis and increase in hepatic glucose cycling; and 2) about a fivefold stimulation in the direct pathway of hepatic glycogen formation.


Sign in / Sign up

Export Citation Format

Share Document