Differential Regulation of Ventricular Adrenomedullin and Atrial Natriuretic Peptide Gene Expression in Pressure and Volume Overload in the Rat

1998 ◽  
Vol 94 (4) ◽  
pp. 359-365 ◽  
Author(s):  
Michael Kaiser ◽  
Ole Kahr ◽  
Yasuyuki Shimada ◽  
Pamela Smith ◽  
Martin Kelly ◽  
...  

1. Adrenomedullin is a recently discovered vasodilating and natriuretic peptide whose physiological and pathophysiological roles remain to be established. Like atrial natiuretic peptide adrenomedullin is expressed in the left ventricle. Ventricular expression of atrial natriuretic peptide is known to be markedly increased by volume or pressure overload. In this study we investigated whether ventricular expression of adrenomedullin is similarly stimulated under such conditions. 2. Ventricular adrenomedullin and atrial natriuretic peptide mRNA levels as well as those of a loading control mRNA (glyceraldehyde-3-phosphate dehydrogenase) were quantified by Northern blot analysis in (a) rats with severe post-infarction heart failure induced by left coronary ligation at 30 days post-surgery and (b) in rats with pressure-related cardiac hypertrophy induced by aortic banding at several time points (0.5, 1 and 4 h, and 1, 4, 7 and 28 days) after surgery. Levels were compared with those in matched sham-operated controls. 3. The mRNA level of atrial natriuretic peptide was markedly increased (8–10-fold) in the left ventricle of animals with post-infarction heart failure. In contrast, there was only a modest (40%) increase in the level of adrenomedullin mRNA. In rats with pressure-induced cardiac hypertrophy the ventricular level of atrial natriuretic peptide mRNA was again markedly increased (maximum 10-fold). The increase was first noticeable at 24 h post-banding and persisted until 28 days. In contrast, there was no change in adrenomedullin mRNA level compared with sham-operated rats at any time point. 4. Despite having similar systemic effects, the expression of adrenomedullin and atrial natriuretic peptide in the left ventricle is differently regulated. The findings imply distinct roles for the two peptides. The results do not support an important role for ventricular adrenomedullin expression in the remodelling process that occurs during the development of cardiac hypertrophy but suggest that ventricular adrenomedullin participates in the local and/or systemic response to heart failure

1996 ◽  
Vol 90 (3) ◽  
pp. 197-204 ◽  
Author(s):  
Hideo Kawakami ◽  
Hideki Okayama ◽  
Mareomi Hamada ◽  
Kunio Hiwada

1. We assessed the changes of atrial natriuretic peptide and brain natriuretic peptide gene expression associated with progression and regression of cardiac hypertrophy in renovascular hypertensive rats (RHR). 2. Two-kidney, one-clip hypertensive rats (6-week-old male Wistar) were made and studied 6 (RHR-1) and 10 weeks (RHR-2) after the procedure. Regression of cardiac hypertrophy was induced by nephrectomy at 6 weeks after constriction, and the nephrectomized rats were maintained further for 4 weeks (nephrectomized rat: NEP). Sham operation was performed, and the rats were studied after 6 (Sham-1) and 10 weeks (Sham-2). Atrial natriuretic peptide and brain natriuretic peptide gene expression in the left ventricle was analysed by Northern blotting. 3. Plasma atrial natriuretic peptide and brain natriuretic peptide were significantly higher in RHR-1 and RHR-2 than in Sham-1, Sham-2 and NEP. Atrial natriuretic peptide and brain natriuretic peptide mRNA levels in RHR-1 were approximately 7.2-fold and 1.8-fold higher than those in Sham-1, respectively, and the corresponding levels in RHR-2 were 13.0-fold and 2.4-fold higher than those in Sham-2, respectively. Atrial natriuretic peptide and brain natriuretic peptide mRNA levels of NEP were normalized. Levels of atrial natriuretic peptide and brain natriuretic peptide mRNA were well correlated positively with left ventricular weight/body weight ratios. There was a significant positive correlation between the levels of atrial natriuretic peptide and brain natriuretic peptide mRNA (r = 0.86, P<0.01). 4. We conclude that the expression of atrial natriuretic peptide and brain natriuretic peptide genes is regulated in accordance with the degree of myocardial hypertrophy and that the augmented expression of these two natriuretic peptides may play an important role in the maintenance of cardiovascular haemodynamics in renovascular hypertension.


1987 ◽  
Vol 253 (6) ◽  
pp. H1449-H1455 ◽  
Author(s):  
R. E. Mendez ◽  
J. M. Pfeffer ◽  
F. V. Ortola ◽  
K. D. Bloch ◽  
S. Anderson ◽  
...  

To study the role of atrial natriuretic peptide (ANP) in chronic heart failure, ANP synthesis, storage, and release were examined by measuring atrial ANP messenger ribonucleic acid (mRNA) levels and atrial and plasma ANP concentrations in rats with myocardial infarction produced by coronary artery ligation. Three groups were defined as the following: 1) controls, sham-operated, or operated, but noninfarcted; 2) moderate infarcts, involving 5-30% of the left ventricular circumference; and 3) large infarcts (greater than or equal to 30%). In addition, to determine a possible modulation by dietary Na intake on ANP levels in heart failure, plasma immunoreactive ANP (iANP) levels were measured in rats with and without infarcts given low, regular, or high Na intake for 2 wk, by which time all groups were in neutral balance. Plasma iANP levels varied directly with increasing infarct and atrial sizes, irrespective of Na intake. In contrast, atrial ANP concentration varied inversely with increasing infarct size. The ANP mRNA content index, a measure of total atrial ANP mRNA, was significantly increased in rats with large infarcts compared with control rats. These results indicate that in rats with myocardial infarction, the severity of left ventricular dysfunction, as inferred from infarct size, but not chronic Na intake, is the primary determinant of the extent of activation of the ANP system. Elevated circulating ANP levels are maintained through enhanced atrial synthesis and release. ANP may thus play an important role in the hemodynamic and renal adaptations to chronic heart failure.


2001 ◽  
Vol 49 (10) ◽  
pp. 1293-1300 ◽  
Author(s):  
Gad M. Bialik ◽  
Zaid A. Abassi ◽  
Ilan Hammel ◽  
Joseph Winaver ◽  
Dina Lewinson

The natriuretic peptides are believed to play an important role in the pathophysiology of congestive heart failure (CHF). We utilized a quantitative cytomorphometric method, using double immunocytochemical labeling, to assess the characteristics of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in atrial granules in an experimental model of rats with CHF induced by aortocaval fistula. Rats with CHF were further divided into decompensated (sodium-retaining) and compensated (sodium-excreting) subgroups and compared with a sham-operated control group. A total of 947 granules in myocytes in the right atrium were analyzed, using electron microscopy and a computerized analysis system. Decompensated CHF was associated with alterations in the modal nature of granule content packing, as depicted by moving bin analysis, and in the granule density of both peptides. In control rats, the mean density of gold particles attached to both peptides was 347.0 ± 103.6 and 306.3 ± 89.9 gold particles/μm2 for ANP and BNP, respectively. Similar mean density was revealed in the compensated rats (390.6 ± 81.0 and 351.3 ± 62.1 gold particles/μm2 for ANP and BNP, respectively). However, in rats with decompensated CHF, a significant decrease in the mean density of gold particles was observed (141.6 ± 67.3 and 158.0 ± 71.2 gold particles/μm2 for ANP and BNP, respectively; p < 0.05 compared with compensated rats, for both ANP and BNP). The ANP:BNP ratio did not differ between groups. These findings indicate that the development of decompensated CHF in rats with aortocaval fistula is associated with a marked decrease in the density of both peptides in atrial granules, as well as in alterations in the quantal nature of granule formation. The data further suggest that both peptides, ANP and BNP, may be regulated in the atrium by a common secretory mechanism in CHF.


1990 ◽  
Vol 65 (3) ◽  
pp. 211-216 ◽  
Author(s):  
Michael A. Fifer ◽  
Cesar R. Molina ◽  
Antonio C. Quiroz ◽  
Thomas D. Giles ◽  
Howard C. Herrmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document