Central sympathetic outflow to skeletal muscle: the major link between non-esterified fatty acids and elevated blood pressure?

2009 ◽  
Vol 118 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Markus Schlaich

Sympathetic nervous system activation is a hallmark of several conditions associated with an adverse prognosis, including hypertension and the metabolic syndrome. Proposed mediators of increased sympathetic drive include hyperinsulinaemia, leptin, NEFAs (non-esterified fatty acids), pro-inflammatory cytokines, baroreflex impairment and others. The role of NEFAs appears to be of particular importance given the increased levels observed in human obesity and the experimental results linking the NEFA-induced pressor response to sympathetic activation. Findings from human studies have yielded conflicting results with regards to a sympathetically mediated association between NEFAs and elevated arterial blood pressure. In the present issue of Clinical Science, Florian and Pawelczyk present some interesting results obtained from a small number of healthy normotensive lean volunteers who were exposed to NEFA infusion and cardiovascular and sympathetic monitoring using state of the art methodology that appears to be in support of such a link. However, several methodological and conceptual considerations need to be taken into account when interpreting the results from this study. Put into perspective, the case for a substantial sympathetically mediated pressor response to NEFA infusion does not appear to be a very strong one.

1978 ◽  
Vol 234 (6) ◽  
pp. E593 ◽  
Author(s):  
T A Kotchen ◽  
W J Welch ◽  
R T Talwalkar

Circulating neutral lipids inhibit the in vitro renin reaction. To identify the inhibitor(s), free fatty acids were added to human renin and homologous substrate. Capric, lauric, palmitoleic, linoleic, and arachidonic acids each inhibited the rate of angiotensin I production in vitro (P less than 0.01). Inhibition by polysaturated fatty acids (linoleic and arachidonic) was less (P less than 0.01) after catalytic hydrogenation of the double bonds. To evaluate an in vivo effect of renin inhibition intra-arterial blood pressure responses to infusions of renin and angiotensin II (5.0 microgram) were measured in anephric rats (n = 6) before and after infusion of linoleic acid (10 mg iv). Mean increase of blood pressure to angiotensin II before (75 mmHg +/- 9) and after (90 +/- 12) linoleic acid did not differ (P greater than 0.05). However, the pressor response to renin after linoleic acid (18 +/- 3) was less (P less than 0.00)) than that before (102 +/- 13). In summary, several fatty acids inhibit the in vitro renin reaction, and in part inhibition is dependent on unsaturation. Linoleic acid also inhibits the in vivo pressor response to renin. These results suggest that fatty acids may modify the measurement of plasma renin activity and may also affect angiotensin production in vivo.


1963 ◽  
Vol 205 (1) ◽  
pp. 57-59 ◽  
Author(s):  
Francois M. Abboud ◽  
Michael G. Wendling ◽  
John W. Eckstein

Some adrenergic blocking drugs reduce the mobilization of free fatty acids (FFA) in response to administration of catecholamines. The present experiments were done to see if potentiation of the pressor effect of norepinephrine by reserpine is accompanied by a greater increase in plasma FFA. Norepinephrine was infused intravenously into 16 anesthetized dogs. Eight of them had been treated with reserpine, 0.25 mg/kg daily, intraperitoneally for 2 days; the others were not treated. Arterial blood samples were drawn before, during, and after norepinephrine for determination of plasma FFA concentrations. Systemic arterial blood pressure was measured continuously. In the treated animals the maximal increase in arterial blood pressure as well as the progressive increments in FFA concentration were greater than in the untreated dogs. The experiments indicate that potentiation of the pressor response to norepinephrine after reserpine is accompanied by a greater FFA response.


1998 ◽  
Vol 274 (4) ◽  
pp. H1066-H1074 ◽  
Author(s):  
Eduardo Colombari ◽  
Robin L. Davisson ◽  
Richard A. Shaffer ◽  
William T. Talman ◽  
Stephen J. Lewis

This study examined peripheral mechanisms responsible for changes in mean arterial blood pressure, heart rate, and renal, mesenteric, and hindquarter vascular resistances produced by microinjections of l-glutamate (l-Glu) into the nucleus tractus solitarii (NTS) of conscious rats. Microinjection ofl-Glu produced an initial pressor response, bradycardia, and vasoconstriction in each vascular bed. Subsequent hindquarter vasodilation was observed. After prazosin was administered, l-Glu produced initial hypotension that was probably due to reduced cardiac output. This hypotension was followed by hindquarter vasodilation. Inhibition of nitric oxide synthesis did not affect the initial hypotension or bradycardia in rats treated with prazosin, but the first microinjection of l-Glu after administration of prazosin and N G-nitro-l-arginine methyl ester (l-NAME) produced significantly greater hindquarter vasodilation than after administration of prazosin alone. Second and third microinjections ofl-Glu produced significantly smaller hindquarter vasodilation. We conclude that 1) hemodynamic effects produced by microinjection of l-Glu into the NTS of conscious rats involves activation of the sympathetic nervous system and 2) release of preformed nitrosyl factors may mediate vasodilation in the hindquarter vascular bed.


2020 ◽  
Vol 129 (6) ◽  
pp. 1310-1323
Author(s):  
Jennifer L. Magnusson ◽  
Craig A. Emter ◽  
Kevin J. Cummings

The role of serotonin in arterial blood pressure (ABP) regulation across states of vigilance is unknown. We hypothesized that adult rats devoid of CNS serotonin (TPH2−/−) have low ABP in wakefulness and NREM sleep, when serotonin neurons are active. However, TPH2−/− rats experience higher ABP than TPH2+/+ rats in wakefulness and REM only, a phenotype present only in older males and not females. CNS serotonin may be critical for preventing high ABP in males with aging.


1984 ◽  
Vol 4 (1) ◽  
pp. 107-109 ◽  
Author(s):  
E. Shohami ◽  
A. Sidi

The effect of haemorrhagic hypotension on the levels of prostaglandin E2 (PGE2), thromboxane B2 (TXB2), and 6-keto prostaglandin F1α (6-keto-PGF1α) in cortical tissue of rats was studied. Lightly anesthetized rats were subjected to steady-state hypotension for 15 min, with a mean arterial blood pressure of 80, 60, and 40 mm Hg, and compared to a control group of normotensive rats. No significant change was found in the levels of PGE2 and TXB2. The level of 6-keto-PGF1α increased from 7.8 ± 0.9 to 14.1 ± 1.9 pg/mg protein (p < 0.02) at 80 mm Hg. Our findings suggest that prostacyclin, which is a potent vasodilator, might play a role in setting the lower limit of the autoregulation range.


1980 ◽  
Vol 59 (s6) ◽  
pp. 235s-237s ◽  
Author(s):  
R. W. Rockhold ◽  
J. T. Crofton ◽  
L. Share

1. The cardiovascular effects of an enkephalin analogue were examined in spontaneously hypertensive and normotensive Wistar-Kyoto rats. (D-Ala2)-methionine enkephalin caused a biphasic increase in blood pressure and an increase in heart rate after intracerebroventricular injection. 2. The initial pressor response to (D-Ala2)-methionine enkephalin was greater in hypertensive than in normotensive rats. No difference was noted between groups during the secondary pressor response. Heart rate increases paralleled the secondary increase in blood pressure. 3. Naloxone pretreatment abolished the secondary increase in blood pressure and the tachycardia, but did not blunt the initial pressor response in female Wistar-Kyoto rats. 4. Plasma levels of arginine vasopressin were depressed during the plateau phase of the pressor response in hypertensive rats given intracerebroventricular (d-Ala2)-methionine enkephalin. 5. The results suggest that the cardiovascular effects of central enkephalin are not due to vasopressin, but may involve activation of the sympathetic nervous system.


2009 ◽  
Vol 81 (3) ◽  
pp. 589-603 ◽  
Author(s):  
Sergio L. Cravo ◽  
Ruy R. Campos ◽  
Eduardo Colombari ◽  
Mônica A. Sato ◽  
Cássia M. Bergamaschi ◽  
...  

Several forms of experimental evidence gathered in the last 37 years have unequivocally established that the medulla oblongata harbors the main neural circuits responsible for generating the vasomotor tone and regulating arterial blood pressure. Our current understanding of this circuitry derives mainly from the studies of Pedro Guertzenstein, a former student who became Professor of Physiology at UNIFESP later, and his colleagues. In this review, we have summarized the main findings as well as our collaboration to a further understanding of the ventrolateral medulla and the control of arterial blood pressure under normal and pathological conditions.


2001 ◽  
Vol 280 (5) ◽  
pp. R1261-R1268 ◽  
Author(s):  
Takashi Miyawaki ◽  
Ann K. Goodchild ◽  
Paul M. Pilowsky

The role of the 5-hydroxytryptamine (5-HT1A) receptors in the rostral ventrolateral medulla (RVLM) on somatosympathetic, baroreceptor, and chemoreceptor reflexes was examined in anesthetized rats. Microinjection of the selective 5-HT1A agonist 8-hydroxy-di- n-propylamino tetralin (8-OH-DPAT) decreased arterial blood pressure and splanchnic sympathetic nerve activity (SNA). Electrical stimulation of the hindlimb evoked early and late excitatory sympathetic responses. Bilateral microinjection in the RVLM of 8-OH-DPAT markedly attenuated both the early and late responses. This potent inhibition of the somatosympathetic reflex persisted even after SNA and arterial blood pressure returned to preinjection levels. Preinjection of the selective 5-HT1A antagonist NAN-190 in the RVLM blocked the sympathoinhibitory effect of 8-OH-DPAT and attenuated the inhibitory effect on the somatosympathetic reflex. 8-OH-DPAT injected in the RVLM did not affect baroreceptor or chemoreceptor reflexes. Our findings suggest that activation of 5-HT1A receptors in the RVLM exerts a potent, selective inhibition on the somatosympathetic reflex.


1993 ◽  
Vol 264 (1) ◽  
pp. R79-R84 ◽  
Author(s):  
J. N. Stinner ◽  
D. L. Ely

The pressor response to normal daily behaviors and acute stress was studied in black racer snakes (Coluber constrictor) at 30 degrees C. In addition, hematological changes during the stress response were assessed. Mean nighttime systemic arterial blood pressure (SABP) in undisturbed snakes was lower than daytime pressure (26 +/- 3 vs. 32 +/- 9 mmHg, P < 0.001). When snakes were fed mice, SABP increased 3.5- to 4-fold and heart rate increased approximately 3-fold above resting values within approximately 30 s (peak SABP, 99 +/- 18 mmHg; peak heart rate, 99 +/- 12 beats/min). Killing and ingesting the mice required 6-15 min, during which time mean SABP and heart rate were 84 +/- 16 mmHg and 92 +/- 12 beats/min. Pulmonary blood pressure also increased but remained 40-50 mmHg lower than SABP. During stress elicited by tapping the snakes for 5-8 min, heart rate was 94 +/- 6 beats/min but SABP averaged only 44 +/- 11 mmHg. Plasma norepinephrine and epinephrine increased 51- and 26-fold. Plasma glucose increased 58%, hematocrit increased 19%, and plasma volume decreased 19%. It is concluded that blood pressure is markedly affected by behavior and that the sympathetic nervous system appears to play a key role.


Sign in / Sign up

Export Citation Format

Share Document