Applying Basic Neuroscience to Aphasia Therapy

1995 ◽  
Vol 4 (4) ◽  
pp. 88-93 ◽  
Author(s):  
Kristen A. Keefe

Advances in basic neuroscience have increased our knowledge about the neural processes underlying learning and memory and the cortical reorganization that occurs in response to environmental demands and cortical injury. This article provides a selective review of published studies conducted in animals that examine functional and structural substrates of neural plasticity in the adult mammalian brain, and discusses the implications of this knowledge for aphasia therapy. The processes and constraints identified in the studies reviewed can be used to refine and justify current aphasia therapies, as well as to design additional behavioral interventions.

2018 ◽  
Author(s):  
Edwin Wong ◽  
Stephen D Glasgow ◽  
Lianne J Trigiani ◽  
Daryan Chitsaz ◽  
Vladmir Rymar ◽  
...  

Netrin-1 was initially characterized as an axon guidance molecule that is essential for normal embryonic neural development; however, many types of neurons continue to express netrin-1 in the post-natal and adult mammalian brain. Netrin-1 and the netrin receptor DCC are both enriched at synapses. In the adult hippocampus, activity-dependent secretion of netrin-1 by neurons potentiates glutamatergic synapse function, and is critical for long-term potentiation, an experimental cellular model of learning and memory. Here, we assessed the impact of neuronal expression of netrin-1 in the adult brain on behavior using tests of learning and memory. We show that adult mice exhibit impaired spatial memory following conditional deletion of netrin-1 from glutamatergic neurons in the hippocampus and neocortex. Further, we provide evidence that mice with conditional deletion of netrin-1 do not display aberrant anxiety-like phenotypes and show a reduction in self-grooming behaviour. These findings reveal a critical role for netrin-1 expressed by neurons in the regulation of spatial memory formation.


2016 ◽  
Vol 224 (2) ◽  
pp. 102-111 ◽  
Author(s):  
Carsten M. Klingner ◽  
Stefan Brodoehl ◽  
Gerd F. Volk ◽  
Orlando Guntinas-Lichius ◽  
Otto W. Witte

Abstract. This paper reviews adaptive and maladaptive mechanisms of cortical plasticity in patients suffering from peripheral facial palsy. As the peripheral facial nerve is a pure motor nerve, a facial nerve lesion is causing an exclusive deefferentation without deafferentation. We focus on the question of how the investigation of pure deefferentation adds to our current understanding of brain plasticity which derives from studies on learning and studies on brain lesions. The importance of efference and afference as drivers for cortical plasticity is discussed in addition to the crossmodal influence of different competitive sensory inputs. We make the attempt to integrate the experimental findings of the effects of pure deefferentation within the theoretical framework of cortical responses and predictive coding. We show that the available experimental data can be explained within this theoretical framework which also clarifies the necessity for maladaptive plasticity. Finally, we propose rehabilitation approaches for directing cortical reorganization in the appropriate direction and highlight some challenging questions that are yet unexplored in the field.


QJM ◽  
2020 ◽  
Vol 113 (Supplement_1) ◽  
Author(s):  
A A A Baraka ◽  
K A Hafez ◽  
A I A Othman ◽  
A M M Sadek

Abstract Introduction In recent year deterioration in cognitive, learning, and memory become one of the significant problems in human life. Hippocampus is a pivotal part of the brain’s limbic system which serves a critical role in memory, learning process and regulating the emotions. In most regions of the brain, neurons are generated only at specific periods of early development, and not born in the adulthood. In contrast, hippocampal neurons are generated throughout development and adult life. The hippocampal dentate gyrus was reported to be one of the few regions of the mammalian brain where neurogenesis continue to occur throughout adulthood. The neurogenesis in the dentate gyrus was thought to play an important role in hippocampus-dependent learning and memory. The hippocampal formation is composed of the hippocampus proper, the dentate gyrus and the subiculum. The hippocampus proper is the largest part and is subdivided into fields designated as Cornu Ammonis or Ammon’s horn (CA) from CA1 to CA4. Ammon's horn is continuous with the subiculum, which acts as the main output source of the hippocampal formation. Aim of the Study To study the postnatal development of the hippocampal formation. Materials and Methods Five male albino rats from the following postnatal ages day 1, week 1, week 2, week3 and week 4 were studied by histological, immunohistochemical, and morphometric methods. Results The general architecture of the hippocampus proper with its polymorphic, pyramidal, and molecular layers was present at day1, whereas the details of the adult structure appeared at week 2. In the dentate gyrus, distinct lamination appeared at week 1 and its maturation continued with the production of neurons at the interhilar zone that peaked at week 2. The number and density of pyramidal axons and dendrites increase by age. Astrocytes increased in size and staining affinity for glial filaments, and acquired a stellate shape with age. Furthermore, the number of granule cell layers increased concomitantly with the increase in thickness of the molecular and polymorphic layers of both the hippocampus proper and the dentate gyrus. Conclusion The important sequences of events in the growth and maturation of the hippocampal formation in male albino rat occurred in the first 2 postnatal weeks.


2009 ◽  
Vol 30 (3) ◽  
pp. 483-497 ◽  
Author(s):  
Silvia Medrano ◽  
Melissa Burns-Cusato ◽  
Marybless B. Atienza ◽  
Donya Rahimi ◽  
Heidi Scrable

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Kevin D. Broad ◽  
Eridan Rocha-Ferreira ◽  
Mariya Hristova

The evolution of intrauterine development, vivipary, and placentation in eutherian mammals has introduced new possibilities and constraints in the regulation of neural plasticity and development which promote neural function that is adaptive to the environment that a developing brain is likely to encounter in the future. A range of evolutionary adaptations associated with placentation transfers disproportionate control of this process to the matriline, a period unique in mammalian development in that there are three matrilineal genomes interacting in the same organism at the same time (maternal, foetal, and postmeiotic oocytes). The interactions between the maternal and developing foetal hypothalamus and placenta can provide a template by which a mother can transmit potentially adaptive information concerning potential future environmental conditions to the developing brain. In conjunction with genomic imprinting, it also provides a template to integrate epigenetic information from both maternal and paternal lineages. Placentation also hands ultimate control of genomic imprinting and intergenerational epigenetic information transfer to the matriline as epigenetic markers undergo erasure and reprogramming in the developing oocyte. These developments, in conjunction with an expanded neocortex, provide a unique evolutionary template by which matrilineal transfer of maternal care, resources, and culture can be used to promote brain development and infant survival.


Sign in / Sign up

Export Citation Format

Share Document