An Exploration of Lung Volume Effects on Swallowing in Chronic Obstructive Pulmonary Disease

2021 ◽  
Vol 30 (5) ◽  
pp. 2155-2168
Author(s):  
Teresa C. Drulia ◽  
Erin Kamarunas ◽  
Cynthia O'Donoghue ◽  
Christy L. Ludlow

Purpose Chronic obstructive pulmonary disease (COPD) limits respiration, which may negatively impact airway safety during swallowing. It is unknown how differences in lung volume in COPD may alter swallowing physiology. This exploratory study aimed to determine how changes in lung volume impact swallow duration and coordination in persons with stable state COPD compared with older healthy volunteers (OHVs). Method Volunteers ≥ 45 years with COPD (VwCOPDs; n = 9) and OHVs ( n = 10) were prospectively recruited. Group and within-participant differences were examined when swallowing at different respiratory volumes: resting expiratory level (REL), tidal volume (TV), and total lung capacity (TLC). Participants swallowed self-administered 20-ml water boluses by medicine cup. Noncued (NC) water swallows were followed by randomly ordered block swallowing trials at three lung volumes. Estimated lung volume (ELV) and respiratory–swallow patterning were quantified using spirometry and respiratory inductive plethysmography. Manometry measured pharyngeal swallow duration from onset of base of tongue pressure increase to offset of negative pressure in the pharyngoesophageal segment. Results During NC swallows, the VwCOPDs swallowed at lower lung volumes than OHVs ( p = .011) and VwCOPDs tended to inspire after swallows more often than OHVs. Pharyngeal swallow duration did not differ between groups; however, swallow duration significantly decreased as the ELV increased in VwCOPDs ( p = .003). During ELV manipulation, the COPD group inspired after swallowing more frequently at REL than at TLC ( p = .001) and at TV ( p = .002). In conclusion, increasing respiratory lung volume in COPD should improve safety by reducing the frequency of inspiration after a swallow.

Thorax ◽  
2001 ◽  
Vol 56 (9) ◽  
pp. 713-720
Author(s):  
J Hadcroft ◽  
P M A Calverley

BACKGROUNDBronchodilator reversibility testing is recommended in all patients with chronic obstructive pulmonary disease (COPD) but does not predict improvements in breathlessness or exercise performance. Two alternative ways of assessing lung mechanics—measurement of end expiratory lung volume (EELV) using the inspiratory capacity manoeuvre and application of negative expiratory pressure (NEP) during tidal breathing to detect tidal airflow limitation—do relate to the degree of breathlessness in COPD. Their usefulness as end points in bronchodilator reversibility testing has not been examined.METHODSWe studied 20 patients with clinically stable COPD (mean age 69.9 (1.5) years, 15 men, forced expiratory volume in one second (FEV1) 29.5 (1.6)% predicted) with tidal flow limitation as assessed by their maximum flow-volume loop. Spirometric parameters, slow vital capacity (SVC), inspiratory capacity (IC), and NEP were measured seated, before and after nebulised saline, and at intervals after 5 mg nebulised salbutamol and 500 μg nebulised ipratropium bromide. The patients attended twice and the treatment order was randomised.RESULTSMean FEV1, FVC, SVC, and IC were unchanged after saline but the degree of tidal flow limitation varied. FEV1 improved significantly after salbutamol and ipratropium (0.11 (0.02) l and 0.09 (0.02) l, respectively) as did the other lung volumes with further significant increases after the combination. Tidal volume and mean expiratory flow increased significantly after all bronchodilators but breathlessness fell significantly only after the combination treatment. The initial NEP score was unrelated to subsequent changes in lung volume.CONCLUSIONSNEP is not an appropriate measurement of acute bronchodilator responsiveness. Changes in IC were significantly larger than those in FEV1and may be more easily detected. However, our data showed no evidence for separation of “reversible” and “irreversible” groups whatever outcome measure was adopted.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Gamal Agmy ◽  
Manal A. Mahmoud ◽  
Azza Bahaa El-Din Ali ◽  
Mohamed Adam

Abstract Background Reversibility measured by spirometry in chronic obstructive pulmonary disease (COPD) is defined as an increase in forced expiratory volume in first second (FEV1) that is both more than 12% and 200 mL above the pre-bronchodilator value in response to inhaled bronchodilators. FEV1 only may not fully reverberate the changes caused by reduction in air trapping or hyperinflation. To date, the studies that examined the effect of inhaled bronchodilators (BD) on residual volume (RV) and total lung capacity (TLC) are limited. This study was carried out to assess the differences between flow and volume responses after bronchodilator reversibility testing in patients with different COPD GOLD stages (GOLD stage I to stage IV). Spirometry and whole body plethysmography were done before and 15 min after inhalation of 400 μg salbutamol. Results Majority (53.3%) of cases were volume responders, 18.7% were flow responders, 20% were flow and volume responders, and 8% were non responders. Significant increase in Δ FEV1% was found in 15% of cases while 55% showed a significant increase in Δ FVC (P= < 0.001). Mean difference of Δ FVC (L) post BD was significantly increased with advancing GOLD stage (P= 0.03). A cutoff point > 20% for Δ RV% had 70% sensitivity and 60% specificity and > 12% for Δ TLC% showed 90% sensitivity and 45% specificity for prediction of clinically significant response to BD based on FEV1. A cutoff point > 18% for Δ RV% had 78% sensitivity and 29% specificity and > 14% for Δ TLC% had 50% sensitivity and 70% specificity for prediction of clinically significant response to BD based on FVC. Conclusion ΔFEV1 underestimates the true effect of bronchodilators with advancing GOLD stage. Measurement of lung volumes in addition to the standard spirometric indices is recommended when determining bronchodilator response in COPD patients.


2011 ◽  
Vol 110 (4) ◽  
pp. 1036-1045 ◽  
Author(s):  
George Cremona ◽  
Joan A. Barbara ◽  
Teresa Melgosa ◽  
Lorenzo Appendini ◽  
Josep Roca ◽  
...  

Lung volume reduction surgery (LVRS) improves lung function, respiratory symptoms, and exercise tolerance in selected patients with chronic obstructive pulmonary disease, who have heterogeneous emphysema. However, the reported effects of LVRS on gas exchange are variable, even when lung function is improved. To clarify how LVRS affects gas exchange in chronic obstructive pulmonary disease, 23 patients were studied before LVRS, 14 of whom were again studied afterwards. We performed measurements of lung mechanics, pulmonary hemodynamics, and ventilation-perfusion (V̇a/Q̇) inequality using the multiple inert-gas elimination technique. LVRS improved arterial Po2 (PaO2) by a mean of 6 Torr ( P = 0.04), with no significant effect on arterial Pco2 (PaCO2), but with great variability in both. Lung mechanical properties improved considerably more than did gas exchange. Post-LVRS PaO2 depended mostly on its pre-LVRS value, whereas improvement in PaO2 was explained mostly by improved V̇a/Q̇ inequality, with lesser contributions from both increased ventilation and higher mixed venous Po2. However, no index of lung mechanical properties correlated with PaO2. Conversely, post-LVRS PaCO2 bore no relationship to its pre-LVRS value, whereas changes in PaCO2 were tightly related ( r2 = 0.96) to variables, reflecting decrease in static lung hyperinflation (intrinsic positive end-expiratory pressure and residual volume/total lung capacity) and increase in airflow potential (tidal volume and maximal inspiratory pressure), but not to V̇a/Q̇ distribution changes. Individual gas exchange responses to LVRS vary greatly, but can be explained by changes in combinations of determining variables that are different for oxygen and carbon dioxide.


Author(s):  
L.A. Shpagina ◽  
◽  
E.B. Logashenko ◽  
E.V. Anikina ◽  

Abstract: Despite decrease in industrial aerosol impact on workers’ health there are disproportionately high prevalence of occupational lung diseases. So, it is of interest to investigate the role of nanoparticles. Objective was to establish lung function features in subjects with occupational chronic obstructive pulmonary disease (COPD) exposed to aerosols containing nanoparticles. Methods. It was a cross-sectional observational study. Subjects with occupational COPD (GOLD 2011-2021 criteria) exposed to aerosols containing metal (n=26) or silica nanoparticles (n=24) enrolled. Comparison group – tobacco smokers with COPD (n=50). Nanoparticles at workplaces air were measured by inductively coupled plasma atomic emission spectrometry and by scanning electron microscopy. Groups were matched by gender, age, COPD duration. Results. Occupational COPD in conditions of metal nanoparticles exposure was characterized by severe airflow limitation – forced expiratory volume in one second (FEV1) was 38%(35%;42%), by prominent increase in lung volumes – functional residual capacity (FRC) was 192% (184%;203%) and by highest decrease in diffusing lung capacity for carbon monoxide (DLco/Va), 34% (31%;38%). In occupational COPD subjects exposed to silica nanoparticles mild airflow limitation, mild increase in lung volumes and substantial decrease in DLco/Va, were seen. In logistic regression model metal nanoparticles mass concentration was associated with DLco/Va, FRC, FEV1, Raw and silica nanoparticles mass concentration – with DLco and FEV1. Conclusion. Nanoparticles in industrial aerosols are associated with occupational COPD phenotype.


Sign in / Sign up

Export Citation Format

Share Document