Acoustic-Reflex Dynamics for Pulsed Signals

1978 ◽  
Vol 21 (2) ◽  
pp. 295-308
Author(s):  
Terry L. Wiley ◽  
Raymond S. Karlovich

Contralateral acoustic-reflex measurements were taken for 10 normal-hearing subjects using a pulsed broadband noise as the reflex-activating signal. Acoustic impedance was measured at selected times during the on (response maximum) and off (response minimum) portions of the pulsed activator over a 2-min interval as a function of activator period and duty cycle. Major findings were that response maxima increased as a function of time for longer duty cycles and that response minima increased as a function of time for all duty cycles. It is hypothesized that these findings are attributable to the recovery characteristics of the stapedius muscle. An explanation of portions of the results from previous temporary threshold shift experiments on the basis of acoustic-reflex dynamics is proposed.

1974 ◽  
Vol 17 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Raymond S. Karlovich ◽  
Terry L. Wiley

The test ear of each of nine normal-hearing subjects was exposed for three minutes to a 1000-Hz tone at 110 dB SPL. Either a 4000-Hz tone at 105 dB SPL or a broad-band noise at 100 dB SPL was presented to the contralateral ear during exposure. Four different temporal patterns were used for each contralateral signal: (1) continuous, (2) 18 seconds on/18 seconds off, (3) 1.8 seconds on/1.8 seconds off, and (4) 0.18 seconds on/0.18 seconds off. A control condition, consisting of the absence of contralateral stimulation, also was used. Pre- and postexposure thresholds for the test ear were tracked at a signal one-half octave above the exposure frequency. Resultant data indicated that reduction in temporary threshold shift was greatest for conditions involving rapidly pulsed (1.8 and 0.18 seconds on-off) contralateral signals. We hypothesized that these data were reflective of the dynamic properties of the acoustic reflex. Specifically, we posited that the acoustic reflex manifests less adaptation in response to rapid signal-repetition rates and relatively more adaptation to sustained or slowly pulsed signals.


1985 ◽  
Vol 50 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Donna G. Greenfield ◽  
Terry L. Wiley ◽  
Michael G. Block

Acoustic-reflex growth functions and Loudness-Discomfort Level (LDL) measures were obtained for 15 normal-hearing subjects. The hypothesis that signals considered uncomfortably loud occur at intensity levels that produce proportionately equal acoustic-reflex magnitudes was evaluated. Individual reflex growth functions were measured as a function of activator SPL for a 1000-Hz tone, a 4000-Hz tone, and a broadband noise. These growth functions were measured within subjects (two trials) and across subjects in terms of (a) percentage acoustic-impedance change at LDL, (b) percentage acoustic-reactance change at LDL, (c) acoustic impedance at LDL, (d) relative change in acoustic impedance at LDL, and (e) ratio of static acoustic impedance to change in acoustic impedance at LDL. Although the loudness and acoustic-reflex measures demonstrated good reliability across trials, the data showed large variability across subjects and did not support the experimental hypothesis. It was concluded, therefore, that the use of acoustic-reflex measures in the estimation of an individual's LDL is unwarranted.


1979 ◽  
Vol 22 (2) ◽  
pp. 295-310 ◽  
Author(s):  
Michael G. Block ◽  
Terry L. Wiley

Acoustic-reflex growth functions and loudness-balance judgments were obtained for three normal-hearing subjects with normal middle-ear function. The hypothesis that acoustic reflex-activating signals producing proportionately equal acoustic-impedance changes are judged equal in loudness was evaluated. The mean acoustic impedance and associated standard deviations were computed for the baseline (static) and activator (reflex) portions of each reflex event. An acoustic-impedance change exceeding two standard deviations of baseline was defined as the criterion acoustic-reflex response. Acoustic impedance was measured as a function of activator SPL for broadband noise and a 1000-Hz tone from criterion magnitude to the maximum acoustic impedance (or 120-dB SPL). This was defined as the dynamic range of reflex growth. Loudness-balance measurements were made for the 1000-Hz tone and broadband noise at SPL’s representing 30, 50, and 70% of the individual dynamic range. The data supported the hypothesis.


1962 ◽  
Vol 34 (1) ◽  
pp. 122-123 ◽  
Author(s):  
Weldon Selters ◽  
W. Dixon Ward

2010 ◽  
Vol 21 (02) ◽  
pp. 090-109 ◽  
Author(s):  
Richard H. Wilson ◽  
Rachel McArdle ◽  
Mavie B. Betancourt ◽  
Kaileen Herring ◽  
Teresa Lipton ◽  
...  

Background: The most common complaint of adults with hearing loss is understanding speech in noise. One class of masker that may be particularly useful in the assessment of speech-in-noise abilities is interrupted noise. Interrupted noise usually is a continuous noise that has been multiplied by a square wave that produces alternating intervals of noise and silence. Wilson and Carhart found that spondaic word thresholds for listeners with normal hearing were 28 dB lower in an interrupted noise than in a continuous noise, whereas listeners with hearing loss experienced only an 11 dB difference. Purpose: The purpose of this series of experiments was to determine if a speech-in-interrupted-noise paradigm differentiates better (1) between listeners with normal hearing and listeners with hearing loss and (2) among listeners with hearing loss than do traditional speech-in-continuous-noise tasks. Research Design: Four descriptive/quasi-experimental studies were conducted. Study Sample: Sixty young adults with normal hearing and 144 older adults with pure-tone hearing losses participated. Data Collection and Analysis: A 4.3 sec sample of speech-spectrum noise was constructed digitally to form the 0 interruptions per second (ips; continuous) noise and the 5, 10, and 20 ips noises with 50% duty cycles. The noise samples were mixed digitally with the Northwestern University Auditory Test No. 6 words at selected signal-to-noise ratios and recorded on CD. The materials were presented through an earphone, and the responses were recorded and analyzed at the word level. Similar techniques were used for the stimuli in the remaining experiments. Results: In Experiment 1, using 0 ips as the reference condition, the listeners with normal hearing achieved 34.0, 30.2, and 28.4 dB escape from masking for 5, 10, and 20 ips, respectively. In contrast, the listeners with hearing loss only achieved 2.1 to 2.4 dB escape from masking. Experiment 2 studied the 0 and 5 ips conditions on 72 older listeners with hearing loss, who were on average 13 yr younger and more varied in their hearing loss than the listeners in Experiment 1. The mean escape from masking in Experiment 2 was 7 dB, which is 20–25 dB less than the escape achieved by listeners with normal hearing. Experiment 3 examined the effects that duty cycle (0–100% in 10% steps) had on recognition performance in the 5 and 10 ips conditions. On the 12 young listeners with normal hearing, (1) the 50% correct point increased almost linearly between the 0 and 60% duty cycles (slope = 4.2 dB per 10% increase in duty cycle), (2) the slope of the function was steeper between 60 and 80% duty cycles, and (3) about the same masking was achieved for the 80–100% duty cycles. The data from the listeners with hearing loss were inconclusive. Experiment 4 varied the interburst ratios (0, –6, –12, –24, –48, and –∞ dB) of 5 ips noise and evaluated recognition performance by 24 young adults. The 50% points were described by a linear regression (R 2 = 0.98) with a slope of 0.55 dB/dB. Conclusion: The current data indicate that interrupted noise does provide a better differentiation both between listeners with normal hearing and listeners with hearing loss and among listeners with hearing loss than is provided by continuous noise.


Sign in / Sign up

Export Citation Format

Share Document