Word-Recognition Performance in Interrupted Noise by Young Listeners with Normal Hearing and Older Listeners with Hearing Loss

2010 ◽  
Vol 21 (02) ◽  
pp. 090-109 ◽  
Author(s):  
Richard H. Wilson ◽  
Rachel McArdle ◽  
Mavie B. Betancourt ◽  
Kaileen Herring ◽  
Teresa Lipton ◽  
...  

Background: The most common complaint of adults with hearing loss is understanding speech in noise. One class of masker that may be particularly useful in the assessment of speech-in-noise abilities is interrupted noise. Interrupted noise usually is a continuous noise that has been multiplied by a square wave that produces alternating intervals of noise and silence. Wilson and Carhart found that spondaic word thresholds for listeners with normal hearing were 28 dB lower in an interrupted noise than in a continuous noise, whereas listeners with hearing loss experienced only an 11 dB difference. Purpose: The purpose of this series of experiments was to determine if a speech-in-interrupted-noise paradigm differentiates better (1) between listeners with normal hearing and listeners with hearing loss and (2) among listeners with hearing loss than do traditional speech-in-continuous-noise tasks. Research Design: Four descriptive/quasi-experimental studies were conducted. Study Sample: Sixty young adults with normal hearing and 144 older adults with pure-tone hearing losses participated. Data Collection and Analysis: A 4.3 sec sample of speech-spectrum noise was constructed digitally to form the 0 interruptions per second (ips; continuous) noise and the 5, 10, and 20 ips noises with 50% duty cycles. The noise samples were mixed digitally with the Northwestern University Auditory Test No. 6 words at selected signal-to-noise ratios and recorded on CD. The materials were presented through an earphone, and the responses were recorded and analyzed at the word level. Similar techniques were used for the stimuli in the remaining experiments. Results: In Experiment 1, using 0 ips as the reference condition, the listeners with normal hearing achieved 34.0, 30.2, and 28.4 dB escape from masking for 5, 10, and 20 ips, respectively. In contrast, the listeners with hearing loss only achieved 2.1 to 2.4 dB escape from masking. Experiment 2 studied the 0 and 5 ips conditions on 72 older listeners with hearing loss, who were on average 13 yr younger and more varied in their hearing loss than the listeners in Experiment 1. The mean escape from masking in Experiment 2 was 7 dB, which is 20–25 dB less than the escape achieved by listeners with normal hearing. Experiment 3 examined the effects that duty cycle (0–100% in 10% steps) had on recognition performance in the 5 and 10 ips conditions. On the 12 young listeners with normal hearing, (1) the 50% correct point increased almost linearly between the 0 and 60% duty cycles (slope = 4.2 dB per 10% increase in duty cycle), (2) the slope of the function was steeper between 60 and 80% duty cycles, and (3) about the same masking was achieved for the 80–100% duty cycles. The data from the listeners with hearing loss were inconclusive. Experiment 4 varied the interburst ratios (0, –6, –12, –24, –48, and –∞ dB) of 5 ips noise and evaluated recognition performance by 24 young adults. The 50% points were described by a linear regression (R 2 = 0.98) with a slope of 0.55 dB/dB. Conclusion: The current data indicate that interrupted noise does provide a better differentiation both between listeners with normal hearing and listeners with hearing loss and among listeners with hearing loss than is provided by continuous noise.

1978 ◽  
Vol 21 (2) ◽  
pp. 295-308
Author(s):  
Terry L. Wiley ◽  
Raymond S. Karlovich

Contralateral acoustic-reflex measurements were taken for 10 normal-hearing subjects using a pulsed broadband noise as the reflex-activating signal. Acoustic impedance was measured at selected times during the on (response maximum) and off (response minimum) portions of the pulsed activator over a 2-min interval as a function of activator period and duty cycle. Major findings were that response maxima increased as a function of time for longer duty cycles and that response minima increased as a function of time for all duty cycles. It is hypothesized that these findings are attributable to the recovery characteristics of the stapedius muscle. An explanation of portions of the results from previous temporary threshold shift experiments on the basis of acoustic-reflex dynamics is proposed.


2021 ◽  
Author(s):  
Satyabrata Parida ◽  
Michael G. Heinz

SUMMARYListeners with sensorineural hearing loss (SNHL) struggle to understand speech, especially in noise, despite audibility compensation. These real-world suprathreshold deficits are hypothesized to arise from degraded frequency tuning and reduced temporal-coding precision; however, peripheral neurophysiological studies testing these hypotheses have been largely limited to in-quiet artificial vowels. Here, we measured single auditory-nerve-fiber responses to a natural speech sentence in noise from anesthetized chinchillas with normal hearing (NH) or noise-induced hearing loss (NIHL). Our results demonstrate that temporal precision was not degraded, and broader tuning was not the major factor affecting peripheral coding of natural speech in noise. Rather, the loss of cochlear tonotopy, a hallmark of normal hearing, had the most significant effects (both on vowels and consonants). Because distorted tonotopy varies in degree across etiologies (e.g., noise exposure, age), these results have important implications for understanding and treating individual differences in speech perception for people suffering from SNHL.


2020 ◽  
Vol 31 (07) ◽  
pp. 531-546
Author(s):  
Mitzarie A. Carlo ◽  
Richard H. Wilson ◽  
Albert Villanueva-Reyes

Abstract Background English materials for speech audiometry are well established. In Spanish, speech-recognition materials are not standardized with monosyllables, bisyllables, and trisyllables used in word-recognition protocols. Purpose This study aimed to establish the psychometric characteristics of common Spanish monosyllabic, bisyllabic, and trisyllabic words for potential use in word-recognition procedures. Research Design Prospective descriptive study. Study Sample Eighteen adult Puerto Ricans (M = 25.6 years) with normal hearing [M = 7.8-dB hearing level (HL) pure-tone average] were recruited for two experiments. Data Collection and Analyses A digital recording of 575 Spanish words was created (139 monosyllables, 359 bisyllables, and 77 trisyllables), incorporating materials from a variety of Spanish word-recognition lists. Experiment 1 (n = 6) used 25 randomly selected words from each of the three syllabic categories to estimate the presentation level ranges needed to obtain recognition performances over the 10 to 90% range. In Experiment 2 (n = 12) the 575 words were presented over five 1-hour sessions using presentation levels from 0- to 30-dB HL in 5-dB steps (monosyllables), 0- to 25-dB HL in 5-dB steps (bisyllables), and −3- to 17-dB HL in 4-dB steps (trisyllables). The presentation order of both the words and the presentation levels were randomized for each listener. The functions for each listener and each word were fit with polynomial equations from which the 50% points and slopes at the 50% point were calculated. Results The mean 50% points and slopes at 50% were 8.9-dB HL, 4.0%/dB (monosyllables), 6.9-dB HL, 5.1%/dB (bisyllables), and 1.4-dB HL, 6.3%/dB (trisyllables). The Kruskal–Wallis test with Mann–Whitney U post-hoc analysis indicated that the mean 50% points and slopes at the 50% points of the individual word functions were significantly different among the syllabic categories. Although significant differences were observed among the syllabic categories, substantial overlap was noted in the individual word functions, indicating that the psychometric characteristics of the words were not dictated exclusively by the syllabic number. Influences associated with word difficulty, word familiarity, singular and plural form words, phonetic stress patterns, and gender word patterns also were evaluated. Conclusion The main finding was the direct relation between the number of syllables in a word and word-recognition performance. In general, words with more syllables were more easily recognized; there were, however, exceptions. The current data from young adults with normal hearing established the psychometric characteristics of the 575 Spanish words on which the formulation of word lists for both threshold and suprathreshold measures of word-recognition abilities in quiet and in noise and other word-recognition protocols can be based.


2015 ◽  
Vol 20 (Suppl. 1) ◽  
pp. 31-37 ◽  
Author(s):  
Ruth M. Reeder ◽  
Jamie Cadieux ◽  
Jill B. Firszt

The study objective was to quantify abilities of children with unilateral hearing loss (UHL) on measures that address known deficits for this population, i.e. speech understanding in quiet and noise, and sound localisation. Noise conditions varied by noise type and source location. Parent reports of real-world abilities were also obtained. Performance was compared to gender- and age-matched normal hearing (NH) peers. UHL performance was poorer and more varied compared to NH peers. Among the findings, age correlated with localisation ability for UHL but not NH participants. Low-frequency hearing in the better ear of UHL children was associated with performance in noise; however, there was no relation for NH children. Considerable variability was evident in the outcomes of children with UHL and needs to be understood as future treatment options are considered.


1997 ◽  
Vol 28 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Carole E. Johnson ◽  
Ramona L. Stein ◽  
Alicia Broadway ◽  
Tamatha S. Markwalter

The purpose of this study was to assess the consonant and vowel identification abilities of 12 children with minimal high-frequency hearing loss, 12 children with normal hearing, and 12 young adults with normal hearing using nonsense syllables recorded in a classroom with reverberation time of 0.7 s in two conditions of: (1) quiet and (2) noise (+13 dB S/N against a multi-talker babble). The young adults achieved significantly higher mean consonant and vowel identification scores than both groups of children. The children with normal hearing had significantly higher mean consonant identification scores in quiet than the children with minimal high-frequency hearing loss, but the groups performances did not differ in noise. Further, the two groups of children did not differ in vowel identification performance. Listeners’ responses to consonant stimuli were converted to confusion matrices and submitted to a sequential information analysis (SINFA, Wang & Bilger, 1973). The SINFA determined that the amount of information transmitted, both overall and for individual features, differed as a function of listener group ad listening condition.


1997 ◽  
Vol 40 (2) ◽  
pp. 423-431 ◽  
Author(s):  
Sandra Gordon-Salant ◽  
Peter J. Fitzgibbons

The influence of selected cognitive factors on age-related changes in speech recognition was examined by measuring the effects of recall task, speech rate, and availability of contextual cues on recognition performance by young and elderly listeners. Stimuli were low and high context sentences from the R-SPIN test presented at normal and slowed speech rates in noise. Response modes were final word recall and sentence recall. The effects of hearing loss and age were examined by comparing performances of young and elderly listeners with normal hearing and young and elderly listeners with hearing loss. Listeners with hearing loss performed more poorly than listeners with normal hearing in nearly every condition. In addition, elderly listeners exhibited poorer performance than younger listeners on the sentence recall task, but not on the word recall task, indicating that added memory demands have a detrimental effect on elderly listeners' performance. Slowing of speech rate did not have a differential effect on performance of young and elderly listeners. All listeners performed well when stimulus contextual cues were available. Taken together, these results support the notion that the performance of elderly listeners with hearing loss is influenced by a combination of auditory processing factors, memory demands, and speech contextual information.


2012 ◽  
Vol 23 (09) ◽  
pp. 686-696 ◽  
Author(s):  
Andrew Stuart ◽  
Alyson K. Butler

Background: One purported role of the medial olivocochlear (MOC) efferent system is to reduce the effects of masking noise. MOC system functioning can be evaluated noninvasively in humans through contralateral suppression of otoacoustic emissions. It has been suggested that the strength of the MOC efferent activity should be positively associated with listening performance in noise. Purpose: The objective of the study was to further explore this notion by examining contralateral suppression of transient evoked otoacoustic emissions (TEOAEs) and sentence recognition in two noises with normal hearing young adults. Research Design: A repeated measures multivariate quasi-experimental design was employed. Study Sample: Thirty-two normal hearing young adult females participated. Data Collection and Analysis: Reception thresholds for sentences (RTSs) were determined monaurally and binaurally in quiet and in competing continuous and interrupted noises. Both noises had an identical power spectrum and differed only in their temporal continuity. “Release from masking” was computed by subtracting RTS signal-to-noise ratios in interrupted from continuous noise. TEOAEs were evoked with 80 dB peSPL click stimuli. To examine contralateral suppression, TEOAEs were evaluated with 60 dB peSPL click stimuli with and without a contralateral 65 dB SPL white noise suppressor. Results: A binaural advantage was observed for RTSs in quiet and noise (p < .0001) while there was no difference between ears (p >.05). In noise, performance was superior in the interrupted noise (i.e., RTSs were lower vs. continuous noise; p < .0001). There were no statistically significant differences in TEOAE levels between ears (p >.05). There was also no significant difference in the amount of suppression between ears (p = .41). There were no significant correlations or predictive linear relations between the amount of TEOAE suppression and any indices of sentence recognition in noise (i.e., RTS signal-to-noise ratios and release from masking; p > .05). Conclusions: The findings are not consistent with the notion that increased medial olivocochlear efferent feedback, as assessed via contralateral suppression of TEOAEs, is associated with improved speech perception in continuous and interrupted noise.


Sign in / Sign up

Export Citation Format

Share Document