Evaluation of nano-optical probe from scanning near-field optical microscope images

1999 ◽  
Vol 194 (2-3) ◽  
pp. 369-373 ◽  
Author(s):  
Hosaka ◽  
Shintani ◽  
Kikukawa ◽  
Itoh
2010 ◽  
Vol 19 (04) ◽  
pp. 563-569
Author(s):  
H. ITO ◽  
K. FURUYA ◽  
Y. SHIBATA ◽  
Y. OOTUKA ◽  
S. NOMURA ◽  
...  

A real-space mapping of photovoltage near the edge of the Hall-bar of a GaAs/AlGaAs single heterojunction has been obtained using a dilution-refrigerator-based near-field scanning optical microscope in magnetic fields. The optical probe-sample surface distance dependence of photovoltage is investigated. We obtain photovoltage profile in the vicinity of the edge, which reflects the local chemical potential of the two-dimensional electron gas determined by the distribution of the compressible and incompressible strips.


1999 ◽  
Vol 584 ◽  
Author(s):  
N. Nagy ◽  
M. C. Goh

AbstractThe Near-field Scanning Optical Microscope (NSOM) is an innovative new form of surface microscopy, which can be used to obtain local spectroscopic information about surfaces, enabling the characterization of nanometer-sized regions. The most important component of this instrument is the scanning probe tip. In this paper, we discuss the production of a novel fiber optic probe that can be used in local spectroscopy with an NSOM, but also for simultaneous imaging of topography and chemical forces. The probe consists of a bent, tapered silicon dioxide optical fiber. We have determined the rates of selective wet chemical etching of germanium dioxide doped pure silica optical fibers and used this information to optimize the probe etching process. A systematic approach for the development and testing of such probes is presented. The performance of the optical probes was characterized using surfaces prepared by the technique of microcontact printing. Phase and friction images of these surfaces were obtained using both standard atomic force microscopy tips and the optical fiber probe. The new optical probe was capable of distinguishing between different chemical regions on the patterned surface.


2021 ◽  
Vol 129 (8) ◽  
pp. 083105
Author(s):  
S. T. Chui ◽  
Xinzhong Chen ◽  
Ziheng Yao ◽  
Hans A. Bechtel ◽  
Michael C. Martin ◽  
...  

Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2020 ◽  
Vol 13 (6) ◽  
pp. 697-706
Author(s):  
Yuhong Wang ◽  
Kecheng Zhao ◽  
Fangjin Li ◽  
Qi Gao ◽  
King Wai Chiu Lai

AbstractThe microscopic surface features of asphalt binders are extensively reported in existing literature, but relatively fewer studies are performed on the morphology of asphaltene microstructures and cross-examination between the surface features and asphaltenes. This paper reports the findings of investigating six types of asphalt binders at the nanoscale, assisted with atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM). The surface features of the asphalt binders were examined by using AFM before and after being repetitively peeled by a tape. Variations in infrared (IR) absorbance at the wavenumber around 1700 cm−1, which corresponds to ketones, were examined by using an infrared s-SNOM instrument (scattering-type scanning near-field optical microscope). Thin films of asphalt binders were examined by using STEM, and separate asphaltene particles were cross-examined by using both STEM and AFM. In addition, connections between the microstructures and binder’s physicochemical properties were evaluated. The use of both microscopy techniques provide comprehensive and complementary information on the microscopic nature of asphalt binders. It was found that the dynamic viscosities of asphalt binders are predominantly determined by the zero shear viscosity of the corresponding maltenes and asphaltene content. Limited samples also suggest that the unique bee structures are likely related to the growth of asphaltene content during asphalt binder aging process, but more asphalt binders from different crude sources are needed to verify this finding.


2021 ◽  
Vol 118 (4) ◽  
pp. 041103
Author(s):  
Xiao Guo ◽  
Karl Bertling ◽  
Aleksandar D. Rakić

Sign in / Sign up

Export Citation Format

Share Document