Discontinuous gas exchange and water loss in the keratin beetle Omorgus radula: further evidence against the water conservation hypothesis?

2000 ◽  
Vol 25 (4) ◽  
pp. 309-314 ◽  
Author(s):  
Mareza Bosch ◽  
Steven L. Chown ◽  
Clarke H. Scholtz
2016 ◽  
Vol 12 (12) ◽  
pp. 20160807 ◽  
Author(s):  
Stav Talal ◽  
Amir Ayali ◽  
Eran Gefen

The adaptive nature of discontinuous gas exchange (DGE) in insects is contentious. The classic ‘hygric hypothesis’, which posits that DGE serves to reduce respiratory water loss (RWL), is still the best supported. We thus focused on the hygric hypothesis in this first-ever experimental evolution study of any of the competing adaptive hypotheses. We compared populations of the migratory locust ( Locusta migratoria ) that underwent 10 consecutive generations of selection for desiccation resistance with control populations. Selected locusts survived 36% longer under desiccation stress but DGE prevalence did not differ between these and control populations (approx. 75%). Evolved changes in DGE properties in the selected locusts included longer cycle and interburst durations. However, in contrast with predictions of the hygric hypothesis, these changes were not associated with reduced RWL rates. Other responses observed in the selected locusts were higher body water content when hydrated and lower total evaporative water loss rates. Hence, our data suggest that DGE cycle properties in selected locusts are a consequence of an evolved increased ability to store water, and thus an improved capacity to buffer accumulated CO 2 , rather than an adaptive response to desiccation. We conclude that DGE is unlikely to be an evolutionary response to dehydration challenge in locusts.


Insects ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 262
Author(s):  
John Zukowski ◽  
Nan-Yao Su

The thicknesses of the cuticle and rectal pads, and the spiracle morphology were compared for four termite species from different habitats, including one drywood termite, Cryptotermes brevis Walker, one “wetwood” termite, Cryptotermes cavifrons Banks, one subterranean termite, Coptotermes formosanus Shiraki, and one dampwood termite, Neotermes jouteli (Banks). Cuticle thicknesses were significantly different among all four termite species. Neotermes jouteli had the thickest cuticle, while Co. formosanus had the thinnest. The cuticle of C. brevis was thicker than that of C. cavifrons and Co. formosanus, which may reflect a comparably greater need to prevent water loss in drier habitats for C. brevis. Rectal pad widths were significantly different among all four termite species, except those of C. brevis with N. jouteli. The rectal pads of N. jouteli and C. brevis were thicker than those of C. cavifrons and Co. formosanus, and the rectal pads of C. cavifrons were thicker than those of Co. formosanus in turn. Larger rectal pads likely account for the water conservation mechanism of producing dry, pelleted frass in the kalotermitids (N. jouteli, C. brevis, and C. cavifrons). Morphological observations of the spiracles showed the presence of protuberances (atrial arms) in the three kalotermitids. The function of this protuberance is unclear, but it may serve as a sac-like structure, aiding in gas exchange, or a moisture trap aiding in the prevention of water loss through evaporation.


2007 ◽  
Vol 7 ◽  
pp. 134-140 ◽  
Author(s):  
N. E. Grulke ◽  
E. Paoletti ◽  
R. L. Heath

We tested the effect of daytime chronic moderate ozone (O3) exposure, short-term acute exposure, and both chronic and acute O3exposure combined on nocturnal transpiration in California black oak and blue oak seedlings. Chronic O3exposure (70 ppb for 8 h/day) was implemented in open-top chambers for either 1 month (California black oak) or 2 months (blue oak). Acute O3exposure (~1 h in duration during the day, 120–220 ppb) was implemented in a novel gas exchange system that supplied and maintained known O3concentrations to a leaf cuvette. When exposed to chronic daytime O3exposure, both oaks exhibited increased nocturnal transpiration (without concurrent O3exposure) relative to unexposed control leaves (1.8× and 1.6×, black and blue oak, respectively). Short-term acute and chronic O3exposure did not further increase nocturnal transpiration in either species. In blue oak previously unexposed to O3, short-term acute O3exposure significantly enhanced nocturnal transpiration (2.0×) relative to leaves unexposed to O3. California black oak was unresponsive to (only) short-term acute O3exposure. Daytime chronic and/or acute O3exposures can increase foliar water loss at night in deciduous oak seedlings.


2014 ◽  
Vol 977 ◽  
pp. 290-294 ◽  
Author(s):  
Zhi Qiang Yu ◽  
Qiang Gao ◽  
Wen Feng Ding

In recent years , with the acceleration of the process of China's modernization cities , soil erosion and lead to many more serious environmental problems . This paper describes the harm to the social construction of ecological civilization city soil and water loss,analyzed the causes of soil erosion,and finally illustrates the importance of soil and water conservation of the city and puts forward some suggestions for the construction of soil and water conservation.


2008 ◽  
Vol 126 (2) ◽  
pp. 165-173 ◽  
Author(s):  
Katrin Jõgar ◽  
Aare Kuusik ◽  
Luule Metspalu ◽  
Külli Hiiesaar ◽  
Maria Grishakova ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document