coptotermes formosanus shiraki
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 1)

Insects ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 262
Author(s):  
John Zukowski ◽  
Nan-Yao Su

The thicknesses of the cuticle and rectal pads, and the spiracle morphology were compared for four termite species from different habitats, including one drywood termite, Cryptotermes brevis Walker, one “wetwood” termite, Cryptotermes cavifrons Banks, one subterranean termite, Coptotermes formosanus Shiraki, and one dampwood termite, Neotermes jouteli (Banks). Cuticle thicknesses were significantly different among all four termite species. Neotermes jouteli had the thickest cuticle, while Co. formosanus had the thinnest. The cuticle of C. brevis was thicker than that of C. cavifrons and Co. formosanus, which may reflect a comparably greater need to prevent water loss in drier habitats for C. brevis. Rectal pad widths were significantly different among all four termite species, except those of C. brevis with N. jouteli. The rectal pads of N. jouteli and C. brevis were thicker than those of C. cavifrons and Co. formosanus, and the rectal pads of C. cavifrons were thicker than those of Co. formosanus in turn. Larger rectal pads likely account for the water conservation mechanism of producing dry, pelleted frass in the kalotermitids (N. jouteli, C. brevis, and C. cavifrons). Morphological observations of the spiracles showed the presence of protuberances (atrial arms) in the three kalotermitids. The function of this protuberance is unclear, but it may serve as a sac-like structure, aiding in gas exchange, or a moisture trap aiding in the prevention of water loss through evaporation.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 71 ◽  
Author(s):  
He Du ◽  
Reina L. Tong ◽  
Xueyi Huang ◽  
Bingrong Liu ◽  
Runmei Huang ◽  
...  

Termites have a distinct polyphenism controlled by concise hormonal and molecular mechanisms. Workers undergo double molts to transform into soldiers (worker–presoldier–soldier). Juvenile hormone analogs, such as methoprene, can induce workers to transform into presoldiers. However, the molecular mechanism underlying the worker-to-presoldier transformation in Coptotermes formosanus Shiraki is still not clear. We sequenced the transcriptome of workers four days after they had fed on methoprene-treated filter paper and control group workers, which fed on acetone-treated filter paper. The transcriptome of C. formosanus was assembled using the de novo assembly method. Expression levels of unigenes in the methoprene-treated group and the control group were compared. The differentially expressed genes were further analyzed by Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Tetrapyrrole binding, oxidoreductase activity, and metal ion binding were the only three enriched GO terms. Juvenile hormone synthesis was the first ranked enriched pathway. Carbohydrate, amino acid, and lipid metabolism pathways were also enriched. These three pathways may be related to fat body development, which is critical for presoldier formation. Our results have demonstrated the significance of JH synthesis pathways, and pathways related to fat body development in the artificial induction of presoldiers.


2019 ◽  
Vol 112 (5) ◽  
pp. 2311-2315 ◽  
Author(s):  
Sang-Bin Lee ◽  
Aaron Mullins ◽  
Daniel Aguilera-Olivares ◽  
Thomas Chouvenc ◽  
Nan-Yao Su

Abstract Laboratory studies of Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae) often employ the use of field-collected foraging populations of individuals as defined colonies. The biological relevance of this practice is often called into question, because these colonies lack a full composition of reproductive castes and brood, which may have physiological and behavioral consequences. Rearing intact laboratory colonies can be done; however, it is time-consuming and labor-intensive. The artificial fusion of field-collected foraging populations with a young, laboratory-reared incipient colony may provide whole, intact colonies for laboratory research. The current study measures survivorship of fused colonies using laboratory-reared complete incipient colonies ranging in age from 0 to 5 mo, fused with 100 workers and 10 soldiers from field-collected populations of different colonial origin. Results indicate that 60% of colony fusion was successful when the incipient colony introduced is 5 mo of age. This method of colony fusion will provide researchers with intact colonies using minimal resources.


Sign in / Sign up

Export Citation Format

Share Document