In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves

2000 ◽  
Vol 22 (6) ◽  
pp. 543-551 ◽  
Author(s):  
Yinong Yang ◽  
Rugang Li ◽  
Min Qi
PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e34863 ◽  
Author(s):  
M. Waseem Akhtar ◽  
Mi-Sung Kim ◽  
Megumi Adachi ◽  
Michael J. Morris ◽  
Xiaoxia Qi ◽  
...  

2020 ◽  
Author(s):  
David Blom-Dahl ◽  
Sergio Córdoba ◽  
Hugo Gabilondo ◽  
Pablo Carr-Baena ◽  
Fernando J. Díaz-Benjumea ◽  
...  

AbstractThe Sp family of transcription factors plays important functions during development and disease. An evolutionary conserved role for some Sp family members is the control of limb development. The family is characterized by the presence of three C2H2-type zinc fingers and an adjacent 10 aa region with an unknown function called the Buttonhead (BTD) box. The presence of this BTD-box in all Sp family members identified from arthropods to vertebrates, suggests that it plays an important role during development. However, despite its conservation, the in vivo function of the BTD-box has never been studied. In this work, we have generated specific BTD-box deletion alleles for the Drosophila Sp family members Sp1 and buttonhead (btd) using gene editing tools and analyzed its role during development. Unexpectedly, btd and Sp1 mutant alleles that lack the BTD-box are viable and have almost normal appendages. However, in a sensitized background the requirement of this domain to fully regulate some of Sp1 and Btd target genes is revealed. Furthermore, we have also identified a novel Sp1 role promoting leg vs antenna identity through the repression of spineless (ss) expression in the leg, a function that also depends on the Sp1 BTD-box.


2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


2005 ◽  
Vol 173 (4S) ◽  
pp. 287-287
Author(s):  
Anhur L. Burnett ◽  
Hunter C. Champion ◽  
Robyn E. Becker ◽  
Melissa F. Kramer ◽  
Tongyun Liu ◽  
...  

Pneumologie ◽  
2017 ◽  
Vol 71 (S 01) ◽  
pp. S1-S125
Author(s):  
S Berger ◽  
C Gökeri ◽  
U Behrendt ◽  
SM Wienhold ◽  
J Lienau ◽  
...  

Diabetes ◽  
1993 ◽  
Vol 42 (7) ◽  
pp. 956-965 ◽  
Author(s):  
B. A. Zinker ◽  
D. B. Lacy ◽  
D. Bracy ◽  
J. Jacobs ◽  
D. H. Wasserman

Sign in / Sign up

Export Citation Format

Share Document