Coherent emission and the escape of high brightness temperature radiation in active galactic nuclei

1998 ◽  
Vol 301 (2) ◽  
pp. 414-418 ◽  
Author(s):  
Gregory Benford ◽  
H. Lesch
2021 ◽  
Vol 922 (1) ◽  
pp. L16
Author(s):  
Wu Jiang ◽  
Zhiqiang Shen ◽  
Ivan Martí-Vidal ◽  
Xuezheng Wang ◽  
Dongrong Jiang ◽  
...  

Abstract We report millimeter-VLBI results of low-luminosity active galactic nuclei (M84 and M87) up to 88 GHz with source-frequency phase-referencing observations. We detected the weak VLBI core and obtained the first image of M84 at 88 GHz. The derived brightness temperature of the M84 core was about 7.2 × 109 K, which could serve as a lower limit because the core down to 30 Schwarzschild radii was still unresolved in our 88 GHz observations. We successfully determined the core shifts of M87 at 22–44 GHz and 44–88 GHz through the source-frequency phase-referencing technique. The jet apex of M87 could be deduced at ∼46 μas upstream of the 43 GHz core from core-shift measurements. The estimated magnetic field strength of the 88 GHz core of M87 is 4.8 ± 2.4 G, which is at the same magnitude of 1–30 G near the event horizon probed by the Event Horizon Telescope.


Author(s):  
Jun Liu ◽  
Thomas P. Krichbaum ◽  
Xiang Liu ◽  
Alex Kraus ◽  
Hayley Bignall ◽  
...  

The launch of the RadioAstron space radio telescope provides a unique opportunity to study the extreme high brightness temperature of Active Galactic Nuclei (AGNs) with unprecedented long baselines of up to 28 Earth diameters. A coordinated ground-based flux density monitoring of RadioAstron targets is essential to determine the effect of interstellar scintillation (ISS) on the Space Very Long Baseline Interferometry (SVLBI) visibilities. Moreover, a combination/comparison of scintillation with SVLBI observations is expected to reveal the relative influence of source brightness temperature, compactness, and properties of the interstellar medium on the observed variability at centimeter wavelengths. In 2014 we started a RadioAstron target triggered flux monitoring with the Effelsberg 100-m radio telescope in support of this SVLBI mission. A total of 112 targets were observed during the five-session monitoring performed so far. In this paper we present a statistical study on the short-term flux density variability of the sample, which is focused on the variability characteristics and derived physical properties of the observed sources.


2020 ◽  
Vol 638 ◽  
pp. A113 ◽  
Author(s):  
H. Chen ◽  
M. A. Garrett ◽  
S. Chi ◽  
A. P. Thomson ◽  
P. D. Barthel ◽  
...  

Aims. Submillimetre-selected galaxies (SMGs) at high redshift (z ∼ 2) are potential host galaxies of active galactic nuclei (AGN). If the local Universe is a good guide, ∼50% of the obscured AGN amongst the SMG population could be missed even in the deepest X-ray surveys. Radio observations are insensitive to obscuration; therefore, very long baseline interferometry (VLBI) can be used as a tool to identify AGN in obscured systems. A well-established upper limit to the brightness temperature of 105 K exists in star-forming systems, thus VLBI observations can distinguish AGN from star-forming systems via brightness temperature measurements. Methods. We present 1.6 GHz European VLBI Network (EVN) observations of four SMGs (with measured redshifts) to search for evidence of compact radio components associated with AGN cores. For two of the sources, e-MERLIN images are also presented. Results. Out of the four SMGs observed, we detect one source, J123555.14, that has an integrated EVN flux density of 201 ± 15.2 μJy, corresponding to a brightness temperature of 5.2 ± 0.7 × 105 K. We therefore identify that the radio emission from J123555.14 is associated with an AGN. We do not detect compact radio emission from a possible AGN in the remaining sources (J123600.10, J131225.73, and J163650.43). In the case of J131225.73, this is particularly surprising, and the data suggest that this may be an extended, jet-dominated AGN that is resolved by VLBI. Since the morphology of the faint radio source population is still largely unknown at these scales, it is possible that with a ∼10 mas resolution, VLBI misses (or resolves) many radio AGN extended on kiloparsec scales.


1988 ◽  
Vol 129 ◽  
pp. 47-54
Author(s):  
M. Salvati

We review the information available on some bulk properties of the non-thermal emission regions in Active Galactic Nuclei, such as streaming motions, nature of composing particles, brightness temperature in the proper frame. Most of the information concerns the compact radio emission at relatively large distances from the center, whereas most of the action is thought to occur in the innermost regions which are observed at higher frequencies. We investigate whether these bulk properties can be understood within a general scheme for energy transport and particle acceleration around a magnetized rotating body.


2010 ◽  
Vol 1 (2) ◽  
pp. 111-115
Author(s):  
O. E. Volvach ◽  
L. N. Volvach ◽  
V. S. Bichkova ◽  
M. S. Kardashev ◽  
M. G. Larionov ◽  
...  

1997 ◽  
Vol 488 (1) ◽  
pp. 202-215 ◽  
Author(s):  
Paul S. Smith ◽  
Gary D. Schmidt ◽  
Richard G. Allen ◽  
Dean C. Hines

1997 ◽  
Vol 487 (1) ◽  
pp. 142-152 ◽  
Author(s):  
Gang Bao ◽  
Petr Hadrava ◽  
Paul J. Wiita ◽  
Ying Xiong

Sign in / Sign up

Export Citation Format

Share Document