Cono- and seminiphagous insects of Norway spruce Picea abies (L.) Karst. and their parasitoids in lower and upper montane zone of the Tatra National Park in Poland

2000 ◽  
Vol 124 (5-6) ◽  
pp. 259-266 ◽  
Author(s):  
M. Koziol
2010 ◽  
Vol 56 (No. 4) ◽  
pp. 154-164 ◽  
Author(s):  
M. Kozioł

In the years 1987–1993 research aimed at the qualitative and quantitative composition of insects inhabiting the cones of Norway spruce (Picea abies [L.] Karst.) was carried out in the area of the Tatra National Park (Poland) for the first time. Approximately 72 thousand specimens of insects were obtained, representing 50 species from 8 orders. Kaltenbachiola strobi (Winn.), Plemeliella abietina Seitn. and Cydia strobilella L. were among the most frequently occurring species. The entomofauna of ripening, ripe and old, already lignified cones was determined, and among the insects found trophic groups were distinguished and, consequently, characterized by means of the following ecological indexes: constancy, dominance and species diversity. The qualitative and quantitative composition of spruce (P. abies) cone entomofauna was changing along with the development of the cones, due to the periods of occupancy and leaving the cones by species of varied bioecology. The entomofauna of ripe cones was characterized by higher species diversity (42 species) than that of ripening cones (25 species) and old cones (26 species).


2019 ◽  
Vol 80 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Jan Bodziarczyk ◽  
Jerzy Szwagrzyk ◽  
Tomasz Zwijacz-Kozica ◽  
Antoni Zięba ◽  
Janusz Szewczyk ◽  
...  

Abstract The composition and structure of forest stands in the Tatra National Park were examined using data gathered in 2016 and 2017 from 617 circular sample plots (0.05 ha each). The diameter at breast height of all living trees, standing dead trees, snags, and wind throws was measured along with diameters and lengths of fallen logs within the plot boundaries. Tree height was measured for all living trees within the core (0.01 ha) of the sample plots. Using the obtained data, height-diameter curves were calculated for all major tree species and in the case of spruce, the height-diameter relationships were also calculated separately for each of the three elevation zones (up to 1200 m, between 1200 and 1400 m, above 1400 m). For each elevation zone and park protection zone, we also determined the volumes of live and dead trees. The volume of living trees in the Tatra National Park amounted to 259 m3/ha, which was higher than the volume of dead trees (176 m3/ha). Snags constituted the largest part of the dead wood whilst over 97% of the standing dead trees were spruce Picea abies. Among living trees, the share of spruce ranged from 81% in the low elevation zone to 98% in the middle zone. Other significant species in the lower zone were Abies alba (11%) and Fagus sylvatica (4.5%), while in the middle and upper elevation zones only Sorbus aucuparia occurred in significant numbers. Furthermore, in the lower elevation zone, Fagus sylvatica was the only species displaying significantly higher volumes in the ‘strict protection’ zone compared to the other park areas. In the ‘landscape protection’ zone, Picea abies was the most dominant species and the share of other species in the lowest elevation zones calculated based on tree density was smaller than calculated based on tree volume, indicating problems with stand conversion from spruce monoculture to mixed forest.


2012 ◽  
Vol 73 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Jan Karczmarski ◽  
Celina Bryniarska

Budowa i struktura górnoreglowych borów świerkowych [Picea abies (L.) H. Karst] o charakterze pierwotnym w dolinach Jarząbczej i Pyszniańskiej (Tatrzański Park Narodowy)


2019 ◽  
Vol 61 (3) ◽  
pp. 174-181
Author(s):  
Wojciech Grodzki ◽  
Wojciech Gąsienica Fronek

Abstract In March 2017, in the eastern part of the Tatra National Park in Poland, large windthrowns affected the passively and actively protected Norway spruce Picea abies stands. In early 2018, a set of 12 small research plots (20 trees on each plot) was established in the Norway spruce stands next to the windblown area – 6 in the stands under active nature protection (broken and fallen trees processed in 2017), and 6 in the stands under passive nature protection (trees left on the ground). Living trees on the plots were regularly checked during the growing season in order to identify and register the spruces infested by Ips typographus, which were dissected in 2 or 4 half-meter sections. 155 spruces (64%) infested by I. typographus were recorded on all 12 plots: 118 out of 120 (98%) in passive and 37 out of 120 trees (31%) in active protection. Mean infestation density calculated on 128 samples from 47 trees was higher under passive than under active protection (1.23 and 0.92 mating chamber per 1 dm2, respectively). Among 1709 gallery systems, those with 2 maternal galleries prevailed (63.0%); the mean share of females was higher in passive than in active protection zone (63.1 and 59.6% respectively). The mean number of progeny per one female was higher in active than in passive protection zone (20.23 and 19.12 respectively). I. typographus attack on standing trees had lower intensity in the stands previously subjected to the processing and removal of fallen and broken trees, which indicates positive effect of implemented active protection procedures. The parameters describing I. typographus population on attacked trees, as well as low activity of natural enemies, demonstrate its reproduction potential and resulting high risk of a new outbreak, according to the pattern known earlier from the other areas in Poland and Europe.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1231
Author(s):  
Joanna Korzeniowska ◽  
Paweł Krąż ◽  
Sławomir Dorocki

This work concerns the content of selected heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn), and determines the effect of absolute altitude on the content of metals in the plants of the Tatra National Park (TNP). The metals were determined in two species of plants, i.e., in the moss (Pleurozium schreberi (Willd.) Mitten) and in the Norway spruce (Picea abies (L.) H. Karst). Plant samples were collected in two test areas every 100 m of the altitude of the area, starting from 1000 m above sea level in the Lake Morskie Oko test area and from 1100 m above sea level in the Kasprowy Wierch test area, and ending at 1400 m above sea level for Lake Morskie Oko, and 1750 m above sea level (the moss) and 1550 m above sea level (the spruce) for Kasprowy Wierch. The two test areas are different from each other in terms of natural and physico-geographical conditions (geological structure, landform, climatic conditions). The conducted research showed that both plant species accumulated greater amounts of heavy metals in the Lake Morskie Oko test area than in the Kasprowy Wierch test area. The moss accumulated higher values of metals compared to the spruce. In both the moss and the spruce, the highest values, exceeding the natural content, were found for Cr, Pb, Cd, and Ni. For these metals, natural values were significantly exceeded: 20 times for Cr; 10 times for Pb; 4 times for Cd; and 3 times for Ni. For both examined areas, an increase in the quantity of accumulated metals in plants was also observed with the increase in altitude. The work focuses on the spreading around of heavy metals and their deposition on plants in protected high mountain (alpine) areas, in connection with altitude. Based on the obtained research results, Spearman’s and Kendall’s rank correlations were performed, and showed statistically significant relationships between the values for the content of metals and altitude. There are no heavy metal emission sources in the study area, so it is assumed that the metal content in the plants of the TNP is affected by long-range emissions.


2017 ◽  
Vol 78 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Wojciech Grodzki ◽  
Wojciech Gąsienica Fronek

Abstract At the end of 2013, Norway spruce stands in the area of the Tatra National Park were severely damaged by strong storms especially in the Kościeliska Valley region. In the following spring of 2014, a survey recording the occurrence of the spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) was initiated in order to describe the dynamics of beetle reproduction in relation to protection measures executed in wind-damaged stands. Ten research plots with 20 trees each were established in a socalled active protection zone, where the broken and fallen trees had been processed and removed in 2014, and in a passive protection zone, where no actions were taken, and the dynamics of Norway spruce mortality due to bark beetle infestation including quantitative parameters (infestation density, sex ratio of beetle populations) were examined. The entomological analyses were performed on 25 × 25 cm large bark samples taken from four (active zone) or two (passive zone) tree sections. In the first year of the survey, no infested standing trees were recorded on the plots and the colonisation of fallen and broken trees was very weak. In the second year (2015), infestations appeared in larger numbers on the plots with passive compared to active protection but the infestation density was 0.89 mating chambers per 1 dm2 regardless of the protection status. In the third year (2016), most of the remaining living spruces had been infested with a mean density of 0.82 m.ch. per 1 dm2. In 2015, the proportion of females in the beetle population was 65.8% being higher in the active (68.4%) than the passive (64.0%) protection zone, while in 2016 the proportion was 63.5% and in this case slightly higher in the passive protection zone (63.9% as compared to 63.2%). These results are in accordance with patterns observed in wind-damaged Norway spruce stands of other areas in Poland and Europe and demonstrate the usefulness of forest management procedures in mitigating I. typographus outbreaks.


2010 ◽  
Vol 56 (No. 8) ◽  
pp. 361-372 ◽  
Author(s):  
O. Mauer ◽  
E. Palátová

The paper summarizes results from the analyses of Norway spruce (Picea abies [L.] Karst.) stands managed by the Forest Administration in Horní Maršov, Krkonoše National Park (KRNAP), which are affected by decline and by yellowing of the assimilatory apparatus. Forest stands included in the analyses were aged 10–80 years and originated from both artificial and natural regeneration. Analyses of root systems were combined with analyses of soil chemical properties and assimilatory organs, weather conditions and emissions. The analyses showed that affected trees had small and malformed anchoring root systems with a lower number of horizontal roots and a lower number of fine roots of lower vitality (high proportion of dead fine roots), which penetrated only through the uppermost humus horizons. Root systems of affected trees are infested by the honey fungus (Armillaria sp.), which colonizes anchor roots. Neither root nor bole rots were detected so far.


2016 ◽  
Vol 62 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Peter Fleischer ◽  
Peter Fleischer ◽  
Ján Ferenčík ◽  
Pavol Hlaváč ◽  
Milan Kozánek

Abstract The number of Ips typographus generations developed in a year might be indicative of its population size and of risk to Norway spruce forests. Warm weather and unremoved fallen trees after natural disturbances are thought of as key factors initiating large population increase. We studied I. typographus development in a spruce forest of the Tatra National Park, which was heavily affected by large-scale disturbances in the last decade. Repeated windthrows and consequent bark beetle outbreaks have damaged almost 20,000 hectares of mature Norway spruce forests, what is a half of the National Park forest area. Current I. typographus population size and its response to the environment and to forestry defense measures attract attention of all stakeholders involved in natural resource management, including public. In this paper we analyse the potential I. typographus population size in two consecutive years 2014 and 2015, which represented a climatologically normal year and an extremely hot year, respectively. We used bark temperature and phenology models to estimate the number of generations developed in each year. In 2014, the average bark temperature of standing living trees at study sites was 14.5 °C, in 2015 it increased to 15.7 °C. The bark temperature of fallen logs was 17.7 °C in 2014, and 19.5 °C in 2015. The bark temperature of standing living trees allowed to develop one and two generations in 2014 and 2015, respectively. The elevated bark temperature of fallen logs allowed to develop two generations in 2014 and three generations in 2015. The good match between the predicted and observed timing of each generation emergence as well as the large increase in the number of catches in pheromone traps in 2015 indicated a dramatic increase of the I. typographus population in the extremely warm year, especially at the unmanaged windthrown site.


Sign in / Sign up

Export Citation Format

Share Document