scholarly journals Occurrence of Ips typographus (L.) after wind damage in the Kościeliska Valley of the Tatra National Park

2017 ◽  
Vol 78 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Wojciech Grodzki ◽  
Wojciech Gąsienica Fronek

Abstract At the end of 2013, Norway spruce stands in the area of the Tatra National Park were severely damaged by strong storms especially in the Kościeliska Valley region. In the following spring of 2014, a survey recording the occurrence of the spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) was initiated in order to describe the dynamics of beetle reproduction in relation to protection measures executed in wind-damaged stands. Ten research plots with 20 trees each were established in a socalled active protection zone, where the broken and fallen trees had been processed and removed in 2014, and in a passive protection zone, where no actions were taken, and the dynamics of Norway spruce mortality due to bark beetle infestation including quantitative parameters (infestation density, sex ratio of beetle populations) were examined. The entomological analyses were performed on 25 × 25 cm large bark samples taken from four (active zone) or two (passive zone) tree sections. In the first year of the survey, no infested standing trees were recorded on the plots and the colonisation of fallen and broken trees was very weak. In the second year (2015), infestations appeared in larger numbers on the plots with passive compared to active protection but the infestation density was 0.89 mating chambers per 1 dm2 regardless of the protection status. In the third year (2016), most of the remaining living spruces had been infested with a mean density of 0.82 m.ch. per 1 dm2. In 2015, the proportion of females in the beetle population was 65.8% being higher in the active (68.4%) than the passive (64.0%) protection zone, while in 2016 the proportion was 63.5% and in this case slightly higher in the passive protection zone (63.9% as compared to 63.2%). These results are in accordance with patterns observed in wind-damaged Norway spruce stands of other areas in Poland and Europe and demonstrate the usefulness of forest management procedures in mitigating I. typographus outbreaks.

2019 ◽  
Vol 61 (3) ◽  
pp. 174-181
Author(s):  
Wojciech Grodzki ◽  
Wojciech Gąsienica Fronek

Abstract In March 2017, in the eastern part of the Tatra National Park in Poland, large windthrowns affected the passively and actively protected Norway spruce Picea abies stands. In early 2018, a set of 12 small research plots (20 trees on each plot) was established in the Norway spruce stands next to the windblown area – 6 in the stands under active nature protection (broken and fallen trees processed in 2017), and 6 in the stands under passive nature protection (trees left on the ground). Living trees on the plots were regularly checked during the growing season in order to identify and register the spruces infested by Ips typographus, which were dissected in 2 or 4 half-meter sections. 155 spruces (64%) infested by I. typographus were recorded on all 12 plots: 118 out of 120 (98%) in passive and 37 out of 120 trees (31%) in active protection. Mean infestation density calculated on 128 samples from 47 trees was higher under passive than under active protection (1.23 and 0.92 mating chamber per 1 dm2, respectively). Among 1709 gallery systems, those with 2 maternal galleries prevailed (63.0%); the mean share of females was higher in passive than in active protection zone (63.1 and 59.6% respectively). The mean number of progeny per one female was higher in active than in passive protection zone (20.23 and 19.12 respectively). I. typographus attack on standing trees had lower intensity in the stands previously subjected to the processing and removal of fallen and broken trees, which indicates positive effect of implemented active protection procedures. The parameters describing I. typographus population on attacked trees, as well as low activity of natural enemies, demonstrate its reproduction potential and resulting high risk of a new outbreak, according to the pattern known earlier from the other areas in Poland and Europe.


2014 ◽  
Vol 56 (2) ◽  
pp. 79-92 ◽  
Author(s):  
Wojciech Grodzki ◽  
Jerzy R. Starzyk ◽  
Mieczysław Kosibowicz

Abstract In 2010-2012, investigations on Ips typographus populations were carried out in Norway spruce stands recently affected by bark beetle outbreak in the Beskid Żywiecki Mts. in Poland. The aim of the study was to test the usefulness of several traits describing I. typographus populations for evaluation of their actual outbreak tendency. Infestation density, sex ratio, gallery length, progeny number and beetle length were used as the traits. Trait variability was analyzed in relation to infested tree mortality in the current year of observation and outbreak tendency defined by the comparison of data on tree mortality in the current year and that in the year before. The highest infestation density was found in the stands representing the highest tree mortality in the current year and in those characterized by decreasing outbreak tendency. The gallery system with 2 maternal galleries dominated. The sex ratio of attacking beetles inclined towards females (63.8%) and remained stable during 3 years of observations; the highest percentage of females was found in locations being in stabilization/latency outbreak phase. The length of maternal galleries was somewhat negatively affected by infestation density and positively correlated with the number of progeny in the gallery. The average beetle length was 4.800 mm (± 0.293), ranging between 3.718 and 5.817 mm and being the highest in the uppermost class of tree mortality recorded in the current year of observation. The shortest beetles were collected in the stands with increasing outbreak tendency, and slightly longer - in the stands with outbreak stable and decreasing tendencies. None of the traits tested can be selected as a direct indicator for prediction of outbreak tendency in I. typographus populations. Possible reasons of variability in the analyzed traits are discussed. The traits indicate that I. typographus in the study area represent very high reproductive potential, thus the risk of repeated outbreak is very high


2021 ◽  
Vol 63 (1) ◽  
pp. 36-47
Author(s):  
Wojciech Grodzki

Abstract Pheromone traps are used for monitoring I. typographus populations in Norway spruce stands of the Tatra National Park (TPN) in Poland. The presented study is based on the set of pheromone traps of precisely known location (23) located in the whole area of the TPN and operated continuously in 2010–2019. The data on the captures of beetles were compared with two kinds of data concerning the mortality: the area covered by standing dead trees (airborne photographs) in the no-intervention zone, and the volume of trees infested by bark beetles processed in the active protection zone. No relationship was found between the mean numbers of beetles captured yearly in all pheromone traps in the whole TPN area and the volume of infested trees removed from the stands in the active protection zone. The captures in the two selected study areas were correlated with the area of spots with dead trees in the 500 m circle around the traps, however, this correlation is not statistically significant. There is no relation of captures to the volume of processed infested trees. The captures decreased in the growing seasons after the wind damage, and increased markedly after the drought started in 2015. The results of pheromone trapping are affected by several factors, as wind damage and defence potential of trees resulting from their physiological status. Pheromone traps represent valuable source of information about the bark beetle I. typographus population dynamics, although the collected data do not enable direct definition of its population level, especially in the protected areas with different and unstable (changed in 2017) approach to the protection of stands. As most of the information on beetles is captured in the first half of the growing season, the data collected till the end of July are sufficient for monitoring purposes; thus, the trapping should be reduced to the period May–July.


2016 ◽  
Vol 62 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Peter Fleischer ◽  
Peter Fleischer ◽  
Ján Ferenčík ◽  
Pavol Hlaváč ◽  
Milan Kozánek

Abstract The number of Ips typographus generations developed in a year might be indicative of its population size and of risk to Norway spruce forests. Warm weather and unremoved fallen trees after natural disturbances are thought of as key factors initiating large population increase. We studied I. typographus development in a spruce forest of the Tatra National Park, which was heavily affected by large-scale disturbances in the last decade. Repeated windthrows and consequent bark beetle outbreaks have damaged almost 20,000 hectares of mature Norway spruce forests, what is a half of the National Park forest area. Current I. typographus population size and its response to the environment and to forestry defense measures attract attention of all stakeholders involved in natural resource management, including public. In this paper we analyse the potential I. typographus population size in two consecutive years 2014 and 2015, which represented a climatologically normal year and an extremely hot year, respectively. We used bark temperature and phenology models to estimate the number of generations developed in each year. In 2014, the average bark temperature of standing living trees at study sites was 14.5 °C, in 2015 it increased to 15.7 °C. The bark temperature of fallen logs was 17.7 °C in 2014, and 19.5 °C in 2015. The bark temperature of standing living trees allowed to develop one and two generations in 2014 and 2015, respectively. The elevated bark temperature of fallen logs allowed to develop two generations in 2014 and three generations in 2015. The good match between the predicted and observed timing of each generation emergence as well as the large increase in the number of catches in pheromone traps in 2015 indicated a dramatic increase of the I. typographus population in the extremely warm year, especially at the unmanaged windthrown site.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Georgi Georgiev ◽  
Margarita Georgieva ◽  
Stelian Dimitrov ◽  
Martin Iliev ◽  
Vladislav Trenkin ◽  
...  

The Chuprene Reserve was created in 1973 to preserve the natural coniferous forests in the Western Balkan Range in Bulgaria. The first infestations by European spruce bark beetle (Ips typographus) were registered in Norway spruce (Picea abies) stands in the mid-1980s. The aim of this study is to assess the damages caused by I. typographus in the Chuprene Reserve using remote sensing techniques – unmanned aerial vehicle (UAV) images, airborne images, and satellite images of European Space Imaging (EUSI), combined with terrestrial verification. High-resolution images in four bands of the electromagnetic spectrum and in a standard RGB channel were taken in 2017 via a multispectral camera ‘Parrot Sequoia’, integrated with a specialized professional UAV system eBee ‘Flying Wing’. The health status of Norway spruce stands in the reserve was assessed with the normalized difference vegetation index, based on the digital mixing of imagery captured in the red and near infrared range. The dynamic of bark beetle attacks was studied in GIS on the basis of maps generated from photographic surveys, airborne images taken in 2011 and 2015, and satellite images from 2020. In the UAV-captured area (314.0 ha), the size of Norway spruce stands attacked by I. typographus increased from 7.6 ha (2.4%) in 2011 to 44.9 ha (14.3%) in 2020. The satellite images showed that on the entire territory of the Chuprene Reserve (1451.9 ha), I. typographus killed spruce trees on 137.4 ha, which is 9.6% of the total area.


2019 ◽  
Vol 80 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Jan Bodziarczyk ◽  
Jerzy Szwagrzyk ◽  
Tomasz Zwijacz-Kozica ◽  
Antoni Zięba ◽  
Janusz Szewczyk ◽  
...  

Abstract The composition and structure of forest stands in the Tatra National Park were examined using data gathered in 2016 and 2017 from 617 circular sample plots (0.05 ha each). The diameter at breast height of all living trees, standing dead trees, snags, and wind throws was measured along with diameters and lengths of fallen logs within the plot boundaries. Tree height was measured for all living trees within the core (0.01 ha) of the sample plots. Using the obtained data, height-diameter curves were calculated for all major tree species and in the case of spruce, the height-diameter relationships were also calculated separately for each of the three elevation zones (up to 1200 m, between 1200 and 1400 m, above 1400 m). For each elevation zone and park protection zone, we also determined the volumes of live and dead trees. The volume of living trees in the Tatra National Park amounted to 259 m3/ha, which was higher than the volume of dead trees (176 m3/ha). Snags constituted the largest part of the dead wood whilst over 97% of the standing dead trees were spruce Picea abies. Among living trees, the share of spruce ranged from 81% in the low elevation zone to 98% in the middle zone. Other significant species in the lower zone were Abies alba (11%) and Fagus sylvatica (4.5%), while in the middle and upper elevation zones only Sorbus aucuparia occurred in significant numbers. Furthermore, in the lower elevation zone, Fagus sylvatica was the only species displaying significantly higher volumes in the ‘strict protection’ zone compared to the other park areas. In the ‘landscape protection’ zone, Picea abies was the most dominant species and the share of other species in the lowest elevation zones calculated based on tree density was smaller than calculated based on tree volume, indicating problems with stand conversion from spruce monoculture to mixed forest.


2014 ◽  
Vol 60 (No. 1) ◽  
pp. 6-11 ◽  
Author(s):  
J. Lubojacký ◽  
J. Holuša

The numbers of nontarget arthropods captured by Theysohn pheromone traps (TPTs) and insecticide-treated tripod trap logs (TRIPODs) were compared; both kinds of traps were baited with pheromone lures Pheagr IT for Ips typographus. In 2010, 15 TPTs and 15 TRIPODs were deployed (with a 10-m spacing) in a forest in the northeastern Czech Republic. The TPTs and TRIPODs were inspected weekly during the entire period of I. typographus flight activity (30 April–1 October). The TRIPODs were sprayed with Vaztak 10 SC insecticide every 7 weeks; at each spraying, the pheromone evaporators were renewed. Higher numbers of entomophagous arthropods, including the predacious beetles Thanasimus formicarius and T. femoralis, were captured by the TRIPODs than by the TPTs. The number of Thanasimus spp. captured by TRIPODs was especially high at the end of April. The efficacy of TRIPODs for the control of I. typographus could be maintained while the kill of nontarget organisms could be reduced by deploying the evaporators 1 week later (in early May rather than in late April) in relation to the recommended date of dispenser installation.  


2010 ◽  
Vol 56 (No. 10) ◽  
pp. 474-484 ◽  
Author(s):  
E. Kula ◽  
W. Ząbecki

Research on merocoenoses of cambioxylophagous insect fauna of Norway spruce (Picea abies [L.] Karst.) was carried out in spruce stands of different age in the area with an endemic population (Moravian-Silesian Beskids, Czech Republic) and in the area with an epidemic population (Beskid Żywiecki, Poland) of the eight-toothed spruce bark beetle Ips typographus (L.). The structure of merocoenoses was characterized separately for standing trees attacked by bark beetles, trees struck by lightning, trees affected by fungal pathogens and wind-felling and trees in the form of snags and fragments. The occurrence of cambioxylophagous insects, mostly bark beetles (Coleoptera: Scolytidae), was compared between the study areas with emphasis on dominant facultative primary bark beetles and types of damage to spruce trees.  


Author(s):  
Sigrid Netherer ◽  
Bernd Panassiti ◽  
Josef Pennerstorfer ◽  
Bradley Matthews

Sign in / Sign up

Export Citation Format

Share Document