scholarly journals betaFTZ-F1 dependent and independent activation of Edg78E, a pupal cuticle gene, during the early metamorphic period in Drosophila melanogaster

2002 ◽  
Vol 44 (5) ◽  
pp. 419-425 ◽  
Author(s):  
Haruhisa Kawasaki ◽  
Susumu Hirose ◽  
Hitoshi Ueda
1957 ◽  
Vol s3-98 (41) ◽  
pp. 123-150
Author(s):  
JOAN M. WHITTEN

The fate of the tracheal system is traced from the first larval instar to the adult stage. The basic larval pattern conforms to that shown for other Diptera Cyclorrhapha (Whitten, 1955), and is identical in all three instars. According to previous accounts the adult system directly replaces the larval: the larval system is partly shed, partly histolysed, and the adult system arises from imaginal cell clusters independently of the preceding larval system. In contrast, it is shown here that in the cephalic, thoracic, and anterior abdominal region there is a definite continuity in the tracheal system, from larval, through pupal to the adult stage, whereas in the posterior abdominal region the larval system is histolysed, and the adult system is independent of it in origin. Moreover, in the pupal stage this region is tracheated by tracheae arising from the anterior abdominal region and belonging to a distinct pupal system. Moulting of the tracheal linings is complete at the first and second larval ecdyses, but incomplete at the third larval-pupal and pupal-adult ecdyses. In consequence, in both pupal and adult systems there are tracheae which are secreted around preexisting tracheae, others formed as new ‘branch’ tracheae, and those which have been carried over from the previous instar. In the adult the newly formed tracheae of the posterior abdominal region fall into a fourth category. Most of the adult thoracic air sacs correspond to new ‘branch’ tracheae of other instars. The pre-pupal moult and instar are discussed with reference to the tracheal system and tentative suggestions are made concerning the true nature of the pre-pupal cuticle. There is no pre-pupal tracheal system. Events traced for Drosophila would seem to be general for Cyclorrhapha, both Acalypterae and Calypterae. The separate fates of the anterior and posterior abdom inal systems, in contrast with the straightforward development in Dipterc Nematocera, would appear to mark a distinct step in the evolution of the system in Diptera.


2020 ◽  
Author(s):  
Gesa F. Dinges ◽  
Alexander S. Chockley ◽  
Till Bockemühl ◽  
Kei Ito ◽  
Alexander Blanke ◽  
...  

2001 ◽  
Vol 7 (S2) ◽  
pp. 1012-1013
Author(s):  
Uyen Tram ◽  
William Sullivan

Embryonic development is a dynamic event and is best studied in live animals in real time. Much of our knowledge of the early events of embryogenesis, however, comes from immunofluourescent analysis of fixed embryos. While these studies provide an enormous amount of information about the organization of different structures during development, they can give only a static glimpse of a very dynamic event. More recently real-time fluorescent studies of living embryos have become much more routine and have given new insights to how different structures and organelles (chromosomes, centrosomes, cytoskeleton, etc.) are coordinately regulated. This is in large part due to the development of commercially available fluorescent probes, GFP technology, and newly developed sensitive fluorescent microscopes. For example, live confocal fluorescent analysis proved essential in determining the primary defect in mutations that disrupt early nuclear divisions in Drosophila melanogaster. For organisms in which GPF transgenics is not available, fluorescent probes that label DNA, microtubules, and actin are available for microinjection.


2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.


2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


Sign in / Sign up

Export Citation Format

Share Document