The role of dendritic cells in immune regulation and allergic airway inflammation

Respirology ◽  
2003 ◽  
Vol 8 (2) ◽  
pp. 140-148 ◽  
Author(s):  
John W. UPHAM
2013 ◽  
Vol 288 (23) ◽  
pp. 16262-16273 ◽  
Author(s):  
Keqiang Chen ◽  
Mingyong Liu ◽  
Ying Liu ◽  
Chunyan Wang ◽  
Teizo Yoshimura ◽  
...  

Chemoattractant receptors regulate leukocyte accumulation at sites of inflammation. In allergic airway inflammation, although a chemokine receptor CCR2 was implicated in mediating monocyte-derived dendritic cell (DC) recruitment into the lung, we previously also discovered reduced accumulation of DCs in the inflamed lung in mice deficient in formylpeptide receptor Fpr2 (Fpr2−/−). We therefore investigated the role of Fpr2 in the trafficking of monocyte-derived DCs in allergic airway inflammation in cooperation with CCR2. We report that in allergic airway inflammation, CCR2 mediated the recruitment of monocyte-derived DCs to the perivascular region, and Fpr2 was required for further migration of the cells into the bronchiolar area. We additionally found that the bronchoalveolar lavage liquid from mice with airway inflammation contained both the CCR2 ligand CCL2 and an Fpr2 agonist CRAMP. Furthermore, similar to Fpr2−/− mice, in the inflamed airway of CRAMP−/− mice, DC trafficking into the peribronchiolar areas was diminished. Our study demonstrates that the interaction of CCR2 and Fpr2 with their endogenous ligands sequentially mediates the trafficking of DCs within the inflamed lung.


Allergy ◽  
2015 ◽  
Vol 70 (8) ◽  
pp. 921-932 ◽  
Author(s):  
J. Dong ◽  
C. K. Wong ◽  
Z. Cai ◽  
D. Jiao ◽  
M. Chu ◽  
...  

2014 ◽  
Vol 4 (Suppl 1) ◽  
pp. O21
Author(s):  
Tze Khee Chan ◽  
Xin Yi Loh ◽  
Daniel WS Tan ◽  
Bevin P Engelward ◽  
Fred WS Wong

2018 ◽  
Vol 9 ◽  
Author(s):  
Ekaterina O. Gubernatorova ◽  
Ekaterina A. Gorshkova ◽  
Olga A. Namakanova ◽  
Ruslan V. Zvartsev ◽  
Juan Hidalgo ◽  
...  

2019 ◽  
Vol 20 (14) ◽  
pp. 3508
Author(s):  
Miao-Tzu Huang ◽  
Chiao-Juno Chiu ◽  
Bor-Luen Chiang

Notch is an evolutionarily conserved signaling family which iteratively exerts pleiotropic functions in cell fate decisions and various physiological processes, not only during embryonic development but also throughout adult life. In the context of the respiratory system, Notch has been shown to regulate ciliated versus secretory lineage differentiation of epithelial progenitor cells and coordinate morphogenesis of the developing lung. Reminiscent of its role in development, the Notch signaling pathway also plays a role in repair of lung injuries by regulation of stem cell activity, cell differentiation, cell proliferation and apoptosis. In addition to functions in embryonic development, cell and tissue renewal and various physiological processes, including glucose and lipid metabolism, Notch signaling has been demonstrated to regulate differentiation of literally almost all T-cell subsets, and impact on elicitation of inflammatory response and its outcome. We have investigated the role of Notch in allergic airway inflammation in both acute and chronic settings. In this mini-review, we will summarize our own work and recent advances on the role of Notch signaling in allergic airway inflammation, and discuss potential applications of the Notch signaling family in therapy for allergic airway diseases.


2011 ◽  
Vol 31 (5) ◽  
pp. 420-424
Author(s):  
Hiroshi Nakajima ◽  
Saki Kawashima ◽  
Tomohiro Tamachi ◽  
Kentaro Takahashi ◽  
Koichi Hirose

2019 ◽  
Vol 316 (1) ◽  
pp. L269-L279 ◽  
Author(s):  
Tianwen Lai ◽  
Mindan Wu ◽  
Chao Zhang ◽  
Luanqing Che ◽  
Feng Xu ◽  
...  

Histone deacetylase (HDAC)2 is expressed in airway epithelium and plays a pivotal role in inflammatory cells. However, the role of HDAC2 in allergic airway inflammation remains poorly understood. In the present study, we determined the role of HDAC2 in airway inflammation using in vivo models of house dust mite (HDM)-induced allergic inflammation and in vitro cultures of human bronchial epithelial (HBE) cells exposed to HDM, IL-17A, or both. We observed that HDM-challenged Hdac2+/− mice exhibited substantially enhanced infiltration of inflammatory cells. Higher levels of T helper 2 cytokines and IL-17A expression were found in lung tissues of HDM-challenged Hdac2+/− mice. Interestingly, IL-17A deletion or anti-IL-17A treatment reversed the enhanced airway inflammation induced by HDAC2 impairment. In vitro, HDM and IL-17A synergistically decreased HDAC2 expression in HBE cells. HDAC2 gene silencing further enhanced HDM- and/or IL-17A-induced inflammatory cytokines in HBE cells. HDAC2 overexpresion or blocking IL-17A gene expression restored the enhanced inflammatory cytokines. Collectively, these results support a protective role of HDAC2 in HDM-induced airway inflammation by suppressing IL-17A production and might suggest that activation of HDAC2 and/or inhibition of IL-17A production could prevent the development of allergic airway inflammation.


2014 ◽  
Vol 15 (1) ◽  
Author(s):  
Go Kato ◽  
Koichiro Takahashi ◽  
Hiroki Tashiro ◽  
Keigo Kurata ◽  
Hideharu Shirai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document