Amyloid precursor protein of Alzheimer's disease: evidence for a stable, full-length, trans-membrane pool in primary neuronal cultures

1999 ◽  
Vol 11 (5) ◽  
pp. 1779-1788 ◽  
Author(s):  
Elsdon Storey ◽  
Melissa Katz ◽  
Yardenah Brickman ◽  
Konrad Beyreuther ◽  
Colin. L. Masters
2004 ◽  
Vol 381 (3) ◽  
pp. 619-628 ◽  
Author(s):  
Kei SUGA ◽  
Takami TOMIYAMA ◽  
Hiroshi MORI ◽  
Kimio AKAGAWA

Mutations in presenilins 1 and 2 (PS1 and PS2) account for the majority of cases of early-onset familial Alzheimer's disease. However, the trafficking and interaction of PSs with other proteins in the early secretory pathways are poorly understood. Using co-immunoprecipitation, we found that PS bound to Syx5 (syntaxin 5), which is a target-soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor involved in endoplasmic reticulum (ER)–Golgi vesicular transport in vivo. Syx5 interacted only with the full-length PS holoproteins and not with the naturally occurring N- or C-terminal fragments. The PS holoproteins co-immunoprecipitated with the mutant Syx5, which localized to the ER and Golgi compartments, despite the substitution of the transmembrane region with that of syntaxin 1A. In contrast, the transmembrane deletion mutant that localized to the cytosol, but not to the ER or Golgi compartments, did not co-immunoprecipitate the PS holoproteins. The PS1 variant linked to familial Alzheimer's disease (PS1ΔE9), lacking the region that contains the endoproteolytic cleavage site in the cytoplasmic loop, showed markedly decreased binding to Syx5. Immunofluorescence and sucrose-density-gradient fractionation analyses showed that the full-length PS holoproteins co-localized with Syx5 to the ER and cis-Golgi compartments. Furthermore, Syx5 overexpression resulted in the accumulation of PS holoproteins and the β-amyloid precursor protein, and reduced the secretion of the Aβ (amyloid β) peptide in COS-7 cells. In summary, these results indicate that Syx5 binds to full-length PSs and affects the processing and trafficking of β-amyloid precursor protein in the early secretory compartments.


1993 ◽  
Vol 294 (3) ◽  
pp. 667-674 ◽  
Author(s):  
J E Gardella ◽  
G A Gorgone ◽  
L Candela ◽  
J Ghiso ◽  
E M Castaño ◽  
...  

We amplified DNA encoding the 3′ 109 codons of Alzheimer's-disease amyloid precursor protein (APP) inclusive of the beta protein (A beta) and cytoplasmic domains from cDNA using oligonucleotide primers designed to facilitate cloning into the T7 expression vector pT7Ad23K13. We also modified this construct to generate recombinant molecules incorporating two recently described APP mutants by site-directed mutagenesis. Both native C109 (deletion construct inclusive of the C-terminal 109 residues of APP) and constructs with a single mutation at codon 642 (T-->G, resulting in a substitution of glycine for valine) or a double mutation at codons 595 (G-->T, substituting asparagine for lysine) and 596 (A-->C, substituting leucine for methionine) were expressed in Escherichia coli to levels of 5-20% of total bacterial protein after induction. The major constituent of expressed C109 protein had an apparent molecular mass of 16-18 kDa by SDS/PAGE and appeared to be the full-length construct by size and N-terminal microsequencing. Also present was a 4-5 kDa species that co-purified with C109, constituting only approximately 1% of expressed protein, which was revealed by Western-blot analysis with antibodies specific for A beta epitopes and after biotinylation of purified recombinant C109. This fragment shared N-terminal sequence with, and appeared to arise by proteolysis of, full-length C109 in biosynthetic labelling experiments. C109 spontaneously precipitated after dialysis against NaCl or water, and with prolonged (> 20 weeks) standing was found by electron microscopy to contain a minor (< 5%) fibrillar component that was reactive with antibodies to a C-terminal epitope of APP. Recombinant C109 appears to duplicate some of the biochemical and physicochemical properties of C-terminal A beta-inclusive fragments of APP that have been found in transfected cells, brain cortex and cerebral microvessels.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Suman Rimal ◽  
Yu Li ◽  
Rasika Vartak ◽  
Ji Geng ◽  
Ishaq Tantray ◽  
...  

AbstractAmyloid precursor protein (APP) metabolism is central to Alzheimer’s disease (AD) pathogenesis, but the key etiological driver remains elusive. Recent failures of clinical trials targeting amyloid-β (Aβ) peptides, the proteolytic fragments of amyloid precursor protein (APP) that are the main component of amyloid plaques, suggest that the proteostasis-disrupting, key pathogenic species remain to be identified. Previous studies suggest that APP C-terminal fragment (APP.C99) can cause disease in an Aβ-independent manner. The mechanism of APP.C99 pathogenesis is incompletely understood. We used Drosophila models expressing APP.C99 with the native ER-targeting signal of human APP, expressing full-length human APP only, or co-expressing full-length human APP and β-secretase (BACE), to investigate mechanisms of APP.C99 pathogenesis. Key findings are validated in mammalian cell culture models, mouse 5xFAD model, and postmortem AD patient brain materials. We find that ribosomes stall at the ER membrane during co-translational translocation of APP.C99, activating ribosome-associated quality control (RQC) to resolve ribosome collision and stalled translation. Stalled APP.C99 species with C-terminal extensions (CAT-tails) resulting from inadequate RQC are prone to aggregation, causing endolysosomal and autophagy defects and seeding the aggregation of amyloid β peptides, the main component of amyloid plaques. Genetically removing stalled and CAT-tailed APP.C99 rescued proteostasis failure, endolysosomal/autophagy dysfunction, neuromuscular degeneration, and cognitive deficits in AD models. Our finding of RQC factor deposition at the core of amyloid plaques from AD brains further supports the central role of defective RQC of ribosome collision and stalled translation in AD pathogenesis. These findings demonstrate that amyloid plaque formation is the consequence and manifestation of a deeper level proteostasis failure caused by inadequate RQC of translational stalling and the resultant aberrantly modified APP.C99 species, previously unrecognized etiological drivers of AD and newly discovered therapeutic targets.


2003 ◽  
Vol 70 ◽  
pp. 213-220 ◽  
Author(s):  
Gerald Koelsch ◽  
Robert T. Turner ◽  
Lin Hong ◽  
Arun K. Ghosh ◽  
Jordan Tang

Mempasin 2, a ϐ-secretase, is the membrane-anchored aspartic protease that initiates the cleavage of amyloid precursor protein leading to the production of ϐ-amyloid and the onset of Alzheimer's disease. Thus memapsin 2 is a major therapeutic target for the development of inhibitor drugs for the disease. Many biochemical tools, such as the specificity and crystal structure, have been established and have led to the design of potent and relatively small transition-state inhibitors. Although developing a clinically viable mempasin 2 inhibitor remains challenging, progress to date renders hope that memapsin 2 inhibitors may ultimately be useful for therapeutic reduction of ϐ-amyloid.


2020 ◽  
Vol 21 (12) ◽  
pp. 1164-1173
Author(s):  
Siju Ellickal Narayanan ◽  
Nikhila Sekhar ◽  
Rajalakshmi Ganesan Rajamma ◽  
Akash Marathakam ◽  
Abdullah Al Mamun ◽  
...  

: Alzheimer’s disease (AD) is a progressive brain disorder and one of the most common causes of dementia and death. AD can be of two types; early-onset and late-onset, where late-onset AD occurs sporadically while early-onset AD results from a mutation in any of the three genes that include amyloid precursor protein (APP), presenilin 1 (PSEN 1) and presenilin 2 (PSEN 2). Biologically, AD is defined by the presence of the distinct neuropathological profile that consists of the extracellular β-amyloid (Aβ) deposition in the form of diffuse neuritic plaques, intraneuronal neurofibrillary tangles (NFTs) and neuropil threads; in dystrophic neuritis, consisting of aggregated hyperphosphorylated tau protein. Elevated levels of (Aβ), total tau (t-tau) and phosphorylated tau (ptau) in cerebrospinal fluid (CSF) have become an important biomarker for the identification of this neurodegenerative disease. The aggregation of Aβ peptide derived from amyloid precursor protein initiates a series of events that involve inflammation, tau hyperphosphorylation and its deposition, in addition to synaptic dysfunction and neurodegeneration, ultimately resulting in dementia. The current review focuses on the role of proteomes in the pathogenesis of AD.


2019 ◽  
Vol 294 (25) ◽  
pp. 9760-9770 ◽  
Author(s):  
Shuyu Liu ◽  
Fujiko Ando ◽  
Yu Fujita ◽  
Junjun Liu ◽  
Tomoji Maeda ◽  
...  

Inhibition of angiotensin-converting enzyme (ACE) is a strategy used worldwide for managing hypertension. In addition to converting angiotensin I to angiotensin II, ACE also converts neurotoxic β-amyloid protein 42 (Aβ42) to Aβ40. Because of its neurotoxicity, Aβ42 is believed to play a causative role in the development of Alzheimer's disease (AD), whereas Aβ40 has neuroprotective effects against Aβ42 aggregation and also against metal-induced oxidative damage. Whether ACE inhibition enhances Aβ42 aggregation or impairs human cognitive ability are very important issues for preventing AD onset and for optimal hypertension management. In an 8-year longitudinal study, we found here that the mean intelligence quotient of male, but not female, hypertensive patients taking ACE inhibitors declined more rapidly than that of others taking no ACE inhibitors. Moreover, the sera of all AD patients exhibited a decrease in Aβ42-to-Aβ40–converting activity compared with sera from age-matched healthy individuals. Using human amyloid precursor protein transgenic mice, we found that a clinical dose of an ACE inhibitor was sufficient to increase brain amyloid deposition. We also generated human amyloid precursor protein/ACE+/− mice and found that a decrease in ACE levels promoted Aβ42 deposition and increased the number of apoptotic neurons. These results suggest that inhibition of ACE activity is a risk factor for impaired human cognition and for triggering AD onset.


Neuroscience ◽  
2020 ◽  
Vol 424 ◽  
pp. 184-202
Author(s):  
Rosemary A. Bamford ◽  
Jocelyn Widagdo ◽  
Natsuki Takamura ◽  
Madeline Eve ◽  
Victor Anggono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document