scholarly journals The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-root cortex of Norway spruce (Picea abies) seedlings by the ectomycorrhizal fungus Laccaria bicolor

1998 ◽  
Vol 140 (4) ◽  
pp. 723-733 ◽  
Author(s):  
C. KARABAGHLI-DEGRON ◽  
B. SOTTA ◽  
M. BONNET ◽  
G. GAY ◽  
F. LE TACON
2001 ◽  
Vol 79 (10) ◽  
pp. 1152-1160
Author(s):  
Ana Rincón ◽  
Joëlle Gérard ◽  
Jean Dexheimer ◽  
François Le Tacon

Transmission electron microscopy observations performed with cytochemical stains to detect polysaccharides and cysteine-rich proteins have been done to study the effect of an auxin transport inhibitor (2,3,5-triiodobenzoic acid, TIBA) on Laccaria bicolor (Marie) Orton. hypha attachment and aggregation during mycorrhiza formation in Picea abies (L.) Karst. roots. When the two partners were growing separately without any exchange of information, TIBA did not affect the cell wall's polysaccharide or protein structures, which could play a role in the aggregation or attachment process. The presence of the host strongly increased the production of fungal polysaccharide fibrils, allowing hypha aggregation and attachment with the roots. TIBA inhibited this host effect. Thus, we can hypothesize that TIBA, by preventing fungal indole-3-acetic acid (IAA) transport towards the root, inhibited the production or the efflux of host elicitors responsible for the increase of fungal polysaccharide fibril production. However, we cannot exclude that TIBA had other effects than inhibiting fungal IAA transport.Key words: ectomycorrhizas, auxin transport inhibitor, polysaccharide fibrils.


2009 ◽  
Vol 151 (4) ◽  
pp. 1991-2005 ◽  
Author(s):  
Judith Felten ◽  
Annegret Kohler ◽  
Emmanuelle Morin ◽  
Rishikesh P. Bhalerao ◽  
Klaus Palme ◽  
...  

1989 ◽  
Vol 67 (9) ◽  
pp. 999-1006 ◽  
Author(s):  
Njanoor Narayanan ◽  
Philip Bedard ◽  
Trilochan S. Waraich

In the present study, the effects of the cytosolic Ca2+ transport inhibitor on ATP-dependent Ca2+ uptake by, and unidirectional passive Ca2+ release from, sarcoplassmic reticulum enriched membrane vesicles were examined in parallel experiments to determine whether inhibitor-mediated enhancement in Ca2+ efflux contributes to inhibition of net Ca2+ uptake. When assays were performed at pH 6.8 in the presence of oxalate, low concentrations (<100 μg/mL) of the inhibitor caused substantial inhibition of Ca2+ uptake by SR (28–50%). At this pH, low concentrations of the inhibitor did not cause enhancement of passive Ca2+ release from actively Ca2+-loaded sarcoplasmic reticulum. Under these conditions, high concentrations (>100 μg/mL) of the inhibitor caused stimulation of passive Ca2+ release but to a much lesser extent when compared with the extent of inhibition of active Ca2+ uptake (i.e., twofold greater inhibition of Ca2+ uptake than stimulation of Ca2+ release). When Ca2+ uptake and release assays were carried out at pH 7.4, the Ca2+ release promoting action of the inhibitor became more pronounced, such that the magnitude of enhancement in Ca2+ release at varying concentrations of the inhibitor (20–200 μg/mL) was not markedly different from the magnitude of inhibition of Ca2+ uptake. In the absence of oxalate in the assay medium, inhibition of Ca2+ uptake was observed at alkaline but not acidic pH. These findings imply that the inhibition of Ca2+ uptake observed at pH 6.8 is mainly due to decrease in the rate of active Ca2+ transport into the membrane vesicles rather than stimulation of passive Ca2+ efflux; at alkaline pH (pH 7.4), enhanced Ca2+ efflux contributes substantially, if not exclusively, to the decrease in Ca2+ uptake observed in the presence of the inhibitor. It is suggested that if the cytosolic inhibitor has actions similar to those observed in vitro in intact cardiac muscle, acid–base status of the intracellular fluid would be a major factor influencing the nature of its effects (inhibition of Ca2+ uptake or stimulation of Ca2+ release) on transmembrane Ca2+ fluxes across the sarcoplasmic reticulum.Key words: sarcoplasmic reticulum, Ca2+ uptake, Ca2+ release, endogenous inhibitor, heart muscle.


2006 ◽  
Vol 33 (10) ◽  
pp. 981 ◽  
Author(s):  
Saichol Ketsa ◽  
Apinya Wisutiamonkul ◽  
Wouter G. van Doorn

In Dendrobium and other orchids the ovule becomes mature long after pollination, whereas the ovary starts growing within two days of pollination. The signalling pathway that induces rapid ovary growth after pollination has remained elusive. We placed the auxin antagonist �-(p-chlorophenoxy) isobutyric acid (PCIB) or the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) on the stigma, before pollination. Both treatments nullified pollination-induced ovary growth. The ovaries also did not grow after similar stigma treatment with 1-methylcyclopropene (1-MCP), AgNO3 (both inhibitors of ethylene action), aminooxyacetic acid (AOA) or CoCl2 (which both inhibit ethylene synthesis), before pollination. Pollination could be replaced by placement of the auxin naphthylacetic acid (NAA) on the stigma. All mentioned inhibitors nullified the effect of NAA, indicating that if auxin is the initiator of ovary growth, it acts through ethylene. The results suggest that the pollination effect on ovary growth requires auxin (at least auxin transport and maybe also auxin signalling), and both ethylene synthesis and ethylene action.


Nematology ◽  
2014 ◽  
Vol 16 (7) ◽  
pp. 837-845 ◽  
Author(s):  
Hui Feng ◽  
Ying Shao ◽  
Li-hui Wei ◽  
Cun-yi Gao ◽  
Yi-jun Zhou

Aphelenchoides besseyi is an obligate parasite that often causes white-tip symptoms in rice plants. The nematode exhibits ectoparasitic behaviour with its infection rate matching the development of rice plants. Few studies have analysed how A. besseyi migration is influenced by chemical and host factors. Here, we focused on the effects of auxins on nematode migration and propagation. Exposure of A. besseyi to an auxin gradient created by a Pluronic F-127 gel resulted in nematode aggregation at the highest auxin concentration tested, 100 μm. Inoculation on the susceptible cv. Ningjing1 produced more nematodes than on the resistant rice cv. Tetep, which correlated with their endogenous auxin levels. Young panicles treated with 1-naphthaleneacetic acid produced more grains and nematodes, whereas plants treated with the auxin transport inhibitor, 2,3,5-triiodobenzoic acid, led to fewer nematodes in the seeds. In addition, A. besseyi rarely migrated and multiplied in the plants of the male sterile rice cv. Zhenshan97A, which had insufficient auxin level in pollen and thus could not generate any grains in most panicles. However, large numbers of nematodes were observed in seeds of cv. Zhenshan97A that had received pollens from the maintainer cv. Zhenshan97B. The results indicate that auxin might play a key role in the migration and propagation of A. besseyi.


Sign in / Sign up

Export Citation Format

Share Document