scholarly journals A Role for the Small Molecular Weight GTPases, Rho and Cdc42, in Muscarinic Receptor Signaling to Focal Adhesion Kinase

2008 ◽  
Vol 74 (5) ◽  
pp. 2010-2020 ◽  
Author(s):  
Daniel A. Linseman ◽  
Fred Hofmann ◽  
Stephen K. Fisher
2002 ◽  
Vol 70 (3) ◽  
pp. 940-950 ◽  
Author(s):  
Daniel A. Linseman ◽  
Edward L. McEwen ◽  
Scott D. Sorensen ◽  
Stephen K. Fisher

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Colleen Hadley ◽  
Isin Cakir ◽  
Roger D Cone

Abstract Overweight and obesity are global concerns affecting nearly one third of the world population. These conditions are characterized by increased adiposity and are accompanied by a proportional increase in circulating leptin, an anorexigenic adipokine. Leptin is responsible for signaling peripheral energy status to the central nervous system to modulate food intake and energy expenditure. As such, neurons within the hypothalamus expressing the long isoform of leptin receptor (LepRb), a type I cytokine receptor, are primarily responsible for mediating the effects of leptin, which signal predominantly through the JAK2-STAT3 transduction mechanism. STAT3 is a latent transcription factor activated upon phosphorylation, which triggers its homodimerization and nuclear translocation. Evidence, however, for JAK2-independent, STAT3-dependent leptin receptor signaling mechanisms exist. FAK (focal adhesion kinase, Ptk2) and Pyk2 (protein tyrosine kinase 2b, Ptk2b) are a subset of nonreceptor protein tyrosine kinases and comprise the focal adhesion kinase family. FAK and Pyk2 are implicated in the regulation of cytokine receptor signaling. Furthermore, Pyk2 knockout mice have an obesity prone phenotype. Here, we studied the role of the focal adhesion kinases in leptin receptor signaling using genetic and pharmacological approaches. We found that overexpression of Pyk2 or FAK increased STAT3 phosphorylation (activation). Overexpression of a FAK or Pyk2 construct with impaired kinase activity, however, attenuated STAT3 phosphorylation, suggesting the increase in STAT3 phosphorylation is largely dependent upon kinase activity of FAK/Pyk2. Treatment of cells with a small molecule dual inhibitor of FAK and Pyk2 (PF431396) attenuated leptin-induced STAT3 phosphorylation in a mouse hypothalamic cell line. Importantly, this effect is independent of JAK2, as PF treatment of two independent JAK2-deficient cell lines exhibited similar attenuation of leptin-induced STAT3 phosphorylation. To assess the physiological relevance of FAK/Pyk2 in leptin receptor signaling in vivo, we administered PF compound to the lateral ventricle of 24-hour fasted lean wild-type mice followed by peripheral leptin administration. Intracerebroventricular (ICV) administration of PF suppressed the anorectic effect of leptin as evidenced by impaired inhibition of food intake upon refeeding. Accordingly, analysis of total hypothalamic lysates from these mice showed ICV PF impaired leptin-induced STAT3 phosphorylation. Taken together, these data suggest that Pyk2 and/or FAK play a role in leptin signal transduction.


2007 ◽  
Vol 46 (6) ◽  
pp. 488-496 ◽  
Author(s):  
Qing Shi ◽  
Anita B. Hjelmeland ◽  
Stephen T. Keir ◽  
Linhua Song ◽  
Sarah Wickman ◽  
...  

2012 ◽  
Vol 11 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Rebecca A. Bozym ◽  
Elizabeth Delorme-Axford ◽  
Katharine Harris ◽  
Stefanie Morosky ◽  
Mine Ikizler ◽  
...  

2005 ◽  
Vol 169 (1) ◽  
pp. 179-189 ◽  
Author(s):  
Shaohua Li ◽  
Patricia Liquari ◽  
Karen K. McKee ◽  
David Harrison ◽  
Raj Patel ◽  
...  

Endoneurial laminins (Lms), β1-integrins, and dystroglycan (DG) are important for Schwann cell (SC) ensheathment and myelination of axons. We now show that SC expression of galactosyl-sulfatide, a Lm-binding glycolipid, precedes that of Lms in developing nerves. This glycolipid anchors Lm-1 and -2 to SC surfaces by binding to their LG domains and enables basement membrane (BM) assembly. Revealingly, non–BM-forming fibroblasts become competent for BM assembly when sulfatides are intercalated into their cell surfaces. Assembly is characterized by coalescence of sulfatide, DG, and c-Src into a Lm-associated complex; by DG-dependent recruitment of utrophin and Src activation; and by integrin-dependent focal adhesion kinase phosphorylation. Collectively, our findings suggest that sulfated glycolipids are key Lm anchors that determine which cell surfaces can assemble Lms to initiate BM assembly and DG- and integrin-mediated signaling.


2017 ◽  
Vol 28 (10) ◽  
pp. 1326-1336 ◽  
Author(s):  
Joji Kusuyama ◽  
Kenjiro Bandow ◽  
Tomokazu Ohnishi ◽  
Mitsuhiro Hisadome ◽  
Kaori Shima ◽  
...  

Osteopontin (OPN) is an osteogenic marker protein. Osteoblast functions are affected by inflammatory cytokines and pathological conditions. OPN is highly expressed in bone lesions such as those in rheumatoid arthritis. However, local regulatory effects of OPN on osteoblasts remain ambiguous. Here we examined how OPN influences osteoblast responses to mechanical stress and growth factors. Expression of NO synthase 1 (Nos1) and Nos2 was increased by low-intensity pulsed ultrasound (LIPUS) in MC3T3-E1 cells and primary osteoblasts. The increase of Nos1/2 expression was abrogated by both exogenous OPN overexpression and recombinant OPN treatment, whereas it was promoted by OPN-specific siRNA and OPN antibody. Moreover, LIPUS-induced phosphorylation of focal adhesion kinase (FAK), a crucial regulator of mechanoresponses, was down-regulated by OPN treatments. OPN also attenuated hepatocyte growth factor–induced vitamin D receptor (Vdr) expression and platelet-derived growth factor–induced cell mobility through the repression of FAK activity. Of note, the expression of low–molecular weight protein tyrosine phosphatase (LMW-PTP), a FAK phosphatase, was increased in both OPN-treated and differentiated osteoblasts. CD44 was a specific OPN receptor for LWW-PTP induction. Consistently, the suppressive influence of OPN on osteoblast responsiveness was abrogated by LMW-PTP knockdown. Taken together, these results reveal novel functions of OPN in osteoblast physiology.


2013 ◽  
Vol 55 ◽  
pp. 1-15 ◽  
Author(s):  
Laura E. Gallagher ◽  
Edmond Y.W. Chan

Autophagy is a conserved cellular degradative process important for cellular homoeostasis and survival. An early committal step during the initiation of autophagy requires the actions of a protein kinase called ATG1 (autophagy gene 1). In mammalian cells, ATG1 is represented by ULK1 (uncoordinated-51-like kinase 1), which relies on its essential regulatory cofactors mATG13, FIP200 (focal adhesion kinase family-interacting protein 200 kDa) and ATG101. Much evidence indicates that mTORC1 [mechanistic (also known as mammalian) target of rapamycin complex 1] signals downstream to the ULK1 complex to negatively regulate autophagy. In this chapter, we discuss our understanding on how the mTORC1–ULK1 signalling axis drives the initial steps of autophagy induction. We conclude with a summary of our growing appreciation of the additional cellular pathways that interconnect with the core mTORC1–ULK1 signalling module.


Sign in / Sign up

Export Citation Format

Share Document